Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
30
result(s) for
"Siraj, Sajid"
Sort by:
An Overview of Multi-Criteria Decision Analysis (MCDA) Application in Managing Water-Related Disaster Events: Analyzing 20 Years of Literature for Flood and Drought Events
by
Abdullah, Mohammad Fikry
,
Hodgett, Richard E.
,
Siraj, Sajid
in
bibliometric analysis
,
Climate change
,
Decision making
2021
This paper provides an overview of multi-criteria decision analysis (MCDA) applications in managing water-related disasters (WRD). Although MCDA has been widely used in managing natural disasters, it appears that no literature review has been conducted on the applications of MCDA in the disaster management phases of mitigation, preparedness, response, and recovery. Therefore, this paper fills this gap by providing a bibliometric analysis of MCDA applications in managing flood and drought events. Out of 818 articles retrieved from scientific databases, 149 articles were shortlisted and analyzed using a Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) approach. The results show a significant growth in MCDA applications in the last five years, especially in managing flood events. Most articles focused on the mitigation phase of DMP, while other phases of preparedness, response, and recovery remained understudied. The analytical hierarchy process (AHP) was the most common MCDA technique used, followed by mixed-method techniques and TOPSIS. The article concludes the discussion by identifying a number of opportunities for future research in the use of MCDA for managing water-related disasters.
Journal Article
A hybrid group-based movie recommendation framework with overlapping memberships
by
Rehman, Faisal
,
Hussain, Syed Sajid
,
Ali, Yasher
in
Algorithms
,
Biology and Life Sciences
,
Cluster Analysis
2022
Recommender Systems (RS) are widely used to help people or group of people in finding their required information amid the issue of ever-growing information overload. The existing group recommender approaches consider users to be part of a single group only, but in real life a user may be associated with multiple groups having conflicting preferences. For instance, a person may have different preferences in watching movies with friends than with family. In this paper, we address this problem by proposing a Hybrid Two-phase Group Recommender Framework (HTGF) that takes into consideration the possibility of users having simultaneous membership of multiple groups. Unlike the existing group recommender systems that use traditional methods like K-Means, Pearson correlation, and cosine similarity to form groups, we use Fuzzy C-means clustering which assigns a degree of membership to each user for each group, and then Pearson similarity is used to form groups. We demonstrate the usefulness of our proposed framework using a movies data set. The experiments were conducted on MovieLens 1M dataset where we used Neural Collaborative Filtering to recommend Top-k movies to each group. The results demonstrate that our proposed framework outperforms the traditional approaches when compared in terms of group satisfaction parameters, as well as the conventional metrics of precision, recall, and F-measure.
Journal Article
Stochastic adaptive-service level agreement-based energy management model for smart grid and prosumers
by
Edifor, Ernest Edem
,
Khan, Bilal
,
Ali, Sahibzada Muhammad
in
Adaptability
,
Adaptation
,
Adaptations
2022
The growing issue of demand-supply management between the prosumers and the local energy market requires an efficient and reliable energy management model. The microlayers, such as prosumers, energy districts, and macro players, namely retail dealers and wholesale dealers play a pivotal role in achieving mutual benefits. The stochastic nature of renewable energy generation in energy districts requires an effective model that can contemplate all stochastic complexities. Therefore, this paper proposes a mutual trade model between energy districts and smart grid to authorize the prosumers for mutual energy transactions under the stochastic adaptive-service level agreement. Moreover, multiple smart contacts are developed between the stakeholders to design adaptability and stochastic behavior of wind speed and solar irradiance. The real-time adaptations of the stochastic adaptive-service level agreement are based on technical beneficial feasibility and achieved through stochastic and adaptive functions. The optimized solution based on a genetic algorithm is proposed for the energy cost and energy surplus of prosumers and output parameters of the mutual trade model (grid revenue). In the context of mutual benefits associated with balanced demand and supply, the economic load dispatch and simplex method maximization are used for optimized demand-supply energy management. Moreover, the effectiveness of the proposed adaptive and stochastic mutual trade model is validated through simulation and statistical analysis.
Journal Article
Using Genetic Programming to Identify Characteristics of Brazilian Regions in Relation to Rural Credit Allocation
by
Araújo, Adolfo Vicente
,
Mota, Caroline
,
Siraj, Sajid
in
Agricultural cooperatives
,
Agricultural economics
,
Agricultural production
2023
Rural credit policies have a strong impact on food production and food security. The attribution of credit policies to agricultural production is one of the main problems preventing the guarantee of agricultural expansion. In this work, we conduct family typology analysis applied to a set of research data to characterize different regions. Through genetic programming, a model was developed using user-defined terms to identify the importance and priority of each criterion used for each region. Access to credit results in economic growth and provides greater income for family farmers, as observed by the results obtained in the model for the Sul region. The Nordeste region indicates that the cost criterion is relevant, and according to previous studies, the Nordeste region has the highest number of family farming households and is also the region with the lowest economic growth. An important aspect discovered by this research is that the allocation of rural credit is not ideal. Another important aspect of the research is the challenge of capturing the degree of diversity across different regions, and the typology is limited in its ability to accurately represent all variations. Therefore, it was possible to characterize how credit is distributed across the country and the main factors that can influence access to credit.
Journal Article
NS-2 based simulation framework for cognitive radio sensor networks
by
Mubashir Husain Rehmani
,
Syed Hashim Raza Bukhari
,
Siraj, Sajid
in
Cognitive radio
,
Computer simulation
,
Manufacturing
2018
In this paper, we propose a simulation model for cognitive radio sensor networks (CRSNs) which is an attempt to combine the useful properties of wireless sensor networks and cognitive radio networks. The existing simulation models for cognitive radios cannot be extended for this purpose as they do not consider the strict energy constraint in wireless sensor networks. Our proposed model considers the limited energy available for wireless sensor nodes that constrain the spectrum sensing process—an unavoidable operation in cognitive radios. Our model has been thoroughly tested by performing experiments in different scenarios of CRSNs. The results generated by the model have been found accurate which can be considered for realization of CRSNs.
Journal Article
Remaining idle time aware intelligent channel bonding schemes for cognitive radio sensor networks
by
Mubashir Husain Rehmani
,
Syed Hashim Raza Bukhari
,
Siraj, Sajid
in
Bonding
,
Cognitive radio
,
Computer simulation
2019
Channel bonding (CB) is a technique used to provide larger bandwidth to users. It has been applied to various networks such as wireless local area networks, wireless sensor networks, cognitive radio networks, and cognitive radio sensor networks (CRSNs). The implementation of CB in CRSNs needs special attention as primary radio (PR) nodes traffic must be protected from any harmful interference by cognitive radio (CR) sensor nodes. On the other hand, CR sensor nodes need to communicate without interruption to meet their data rate requirements and conserve energy. If CR nodes perform frequent channel switching due to PR traffic then it will be difficult to meet their quality of service and data rate requirements. So, CR nodes need to select those channels which are stable. By stable, we mean those channels which having less PR activity or long remaining idle time and cause less harmful interference to PR nodes. In this paper, we propose two approaches remaining idle time aware intelligent channel bonding (RITCB) and remaining idle time aware intelligent channel bonding with interference prevention (RITCB-IP) for cognitive radio sensor networks which select stable channels for CB which have longest remaining idle time. We compare our approaches with four schemes such as primary radio user activity aware channel bonding scheme, sample width algorithm, cognitive radio network over white spaces and AGILE. Simulation results show that our proposed approaches RITCB and RITCB-IP decrease harmful interference and increases the life time of cognitive radio sensor nodes.
Journal Article
How fair were COVID-19 restriction decisions? A data-driven investigation of England using the dominance-based rough sets approach
2022
During the COVID-19 pandemic, several countries have taken the approach of tiered restrictions which has remained a point of debate due to a lack of transparency. Using the dominance-based rough set approach, we identify patterns in the COVID-19 data pertaining to the UK government's tiered restrictions allocation system. These insights from the analysis are translated into \"if-then\" type rules, which can easily be interpreted by policy makers. The differences in the rules extracted from different geographical areas suggest inconsistencies in the allocations of tiers in these areas. We found that the differences delineated an overall north south divide in England, however, this divide was driven mostly by London. Based on our analysis, we demonstrate the usefulness of the dominance-based rough sets approach for investigating the fairness and explainabilty of decision making regarding COVID-19 restrictions. The proposed approach and analysis could provide a more transparent approach to localised public health restrictions, which can help ensure greater conformity to the public safety rules.
Preference Elicitation from Pairwise Comparisons in Multi-Criteria Decision Making
by
Siraj, Sajid
in
Computer science
2011
Decision making is an essential activity for humans and often becomes complex in the presence of uncertainty or insufficient knowledge. This research aims at estimating preferences using pairwise comparisons. A decision maker uses pairwise comparison when he/she is unable to directly assign criteria weights or scores to the available options. The judgments provided in pairwise comparisons may not always be consistent for several reasons. Experimentation has been used to obtain statistical evidence related to the widely-used consistency measures. The results highlight the need to propose new consistency measures. Two new consistency measures - termed congruence and dissonance - are proposed to aid the decision maker in the process of elicitation. Inconsistencies in pairwise comparisons are of two types i.e. cardinal and ordinal. It is shown that both cardinal and ordinal consistency can be improved with the help of these two measures. A heuristic method is then devised to detect and remove intransitive judgments. The results suggest that the devised method is feasible for improving ordinal consistency and is computationally more efficient than the optimization-based methods. There exist situations when revision of judgments is not allowed and prioritization is required without attempting to remove inconsistency. A new prioritization method has been proposed using the graph-theoretic approach. Although the performance of the proposed prioritization method was found to be comparable to other approaches, it has practical limitation in terms of computation time. As a consequence, the problem of prioritization is explored as an optimization problem. A new method based on multi-objective optimization is formulated that offers multiple non-dominated solutions and outperforms all other relevant methods for inconsistent set of judgments. A priority estimation tool (PriEsT) has been developed that implements the proposed consistency measures and prioritization methods. In order to show the benefits of PriEsT, a case study involving Telecom infrastructure selection is presented.
Dissertation
Shapley value-based approaches to explain the robustness of classifiers in machine learning
2022
The use of algorithm-agnostic approaches is an emerging area of research for explaining the contribution of individual features towards the predicted outcome. Whilst there is a focus on explaining the prediction itself, a little has been done on explaining the robustness of these models, that is, how each feature contributes towards achieving that robustness. In this paper, we propose the use of Shapley values to explain the contribution of each feature towards the model's robustness, measured in terms of Receiver-operating Characteristics (ROC) curve and the Area under the ROC curve (AUC). With the help of an illustrative example, we demonstrate the proposed idea of explaining the ROC curve, and visualising the uncertainties in these curves. For imbalanced datasets, the use of Precision-Recall Curve (PRC) is considered more appropriate, therefore we also demonstrate how to explain the PRCs with the help of Shapley values. The explanation of robustness can help analysts in a number of ways, for example, it can help in feature selection by identifying the irrelevant features that can be removed to reduce the computational complexity. It can also help in identifying the features having critical contributions or negative contributions towards robustness.