Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
66
result(s) for
"Sisti, Michael B."
Sort by:
Re-convolving the compositional landscape of primary and recurrent glioblastoma reveals prognostic and targetable tissue states
by
Argenziano, Michael G.
,
Goldberg, Alexander R.
,
Canoll, Peter
in
14/32
,
49/91
,
631/378/1689/1690
2023
Glioblastoma (GBM) diffusely infiltrates the brain and intermingles with non-neoplastic brain cells, including astrocytes, neurons and microglia/myeloid cells. This complex mixture of cell types forms the biological context for therapeutic response and tumor recurrence. We used single-nucleus RNA sequencing and spatial transcriptomics to determine the cellular composition and transcriptional states in primary and recurrent glioma and identified three compositional ‘tissue-states’ defined by cohabitation patterns between specific subpopulations of neoplastic and non-neoplastic brain cells. These tissue-states correlated with radiographic, histopathologic, and prognostic features and were enriched in distinct metabolic pathways. Fatty acid biosynthesis was enriched in the tissue-state defined by the cohabitation of astrocyte-like/mesenchymal glioma cells, reactive astrocytes, and macrophages, and was associated with recurrent GBM and shorter survival. Treating acute slices of GBM with a fatty acid synthesis inhibitor depleted the transcriptional signature of this pernicious tissue-state. These findings point to therapies that target interdependencies in the GBM microenvironment.
Glioblastoma (GBM) cells can infiltrate into the tumour microenvironment (TME) and contribute to recurrence. Here, the authors analyse primary and recurrent GBMs and their TME using single-nucleus and spatial transcriptomics, revealing tissue states defined by the combinations of neoplastic and non-neoplastic cells, which could be therapeutic targets.
Journal Article
MRI-localized biopsies reveal subtype-specific differences in molecular and cellular composition at the margins of glioblastoma
2014
Glioblastomas (GBMs) diffusely infiltrate the brain, making complete removal by surgical resection impossible. The mixture of neoplastic and nonneoplastic cells that remain after surgery form the biological context for adjuvant therapeutic intervention and recurrence. We performed RNA-sequencing (RNA-seq) and histological analysis on radiographically guided biopsies taken from different regions of GBM and showed that the tissue contained within the contrast-enhancing (CE) core of tumors have different cellular and molecular compositions compared with tissue from the nonenhancing (NE) margins of tumors. Comparisons with the The Cancer Genome Atlas dataset showed that the samples from CE regions resembled the proneural, classical, or mesenchymal subtypes of GBM, whereas the samples from the NE regions predominantly resembled the neural subtype. Computational deconvolution of the RNA-seq data revealed that contributions from nonneoplastic brain cells significantly influence the expression pattern in the NE samples. Gene ontology analysis showed that the cell type-specific expression patterns were functionally distinct and highly enriched in genes associated with the corresponding cell phenotypes. Comparing the RNA-seq data from the GBM samples to that of nonneoplastic brain revealed that the differentially expressed genes are distributed across multiple cell types. Notably, the patterns of cell type-specific alterations varied between the different GBM subtypes: the NE regions of proneural tumors were enriched in oligodendrocyte progenitor genes, whereas the NE regions of mesenchymal GBM were enriched in astrocytic and microglial genes. These subtypespecific patterns provide new insights into molecular and cellular composition of the infiltrative margins of GBM.
Journal Article
Craniotomy and Survival for Primary Central Nervous System Lymphoma
2019
Abstract
BACKGROUND
Cytoreductive surgery is considered controversial for primary central nervous system lymphoma (PCNSL).
OBJECTIVE
To investigate survival following craniotomy or biopsy for PCNSL
METHODS
The National Cancer Database-Participant User File (NCDB, n = 8936), Surveillance, Epidemiology, and End Results Program (SEER, n = 4636), and an institutional series (IS, n = 132) were used. We retrospectively investigated the relationship between craniotomy, prognostic factors, and survival for PCNSL using case–control design.
RESULTS
In NCDB, craniotomy was associated with increased median survival over biopsy (19.5 vs 11.0 mo), independent of subsequent radiation and chemotherapy (hazard ratio [HR] 0.80, P < .001). We found a similar trend with survival for craniotomy vs biopsy in the IS (HR 0.68, P = .15). In SEER, gross total resection was associated with increased median survival over biopsy (29 vs 10 mo, HR 0.68, P < .001). The survival benefit associated with craniotomy was greater within recursive partitioning analysis (RPA) class 1 group in NCDB (95.1 vs 29.1 mo, HR 0.66, P < .001), but was smaller for RPA 2-3 (14.9 vs 10.0 mo, HR 0.86, P < .001). A surgical risk category (RC) considering lesion location and number, age, and frailty was developed. Craniotomy was associated with increased survival vs biopsy for patients with low RC (133.4 vs 41.0 mo, HR 0.33, P = .01), but not high RC in the IS.
CONCLUSION
Craniotomy is associated with increased survival over biopsy for PCNSL in 3 retrospective datasets. Prospective studies are necessary to adequately evaluate this relationship. Such studies should evaluate patients most likely to benefit from cytoreductive surgery, ie, those with favorable RPA and RC.
Journal Article
Deconvolution of cell type-specific drug responses in human tumor tissue with single-cell RNA-seq
by
Canoll, Peter
,
Zhao, Wenting
,
Banu, Matei Alexandru
in
Analysis
,
Antineoplastic Agents - pharmacology
,
Antineoplastic Agents - therapeutic use
2021
Background
Preclinical studies require models that recapitulate the cellular diversity of human tumors and provide insight into the drug sensitivities of specific cellular populations. The ideal platform would enable rapid screening of cell type-specific drug sensitivities directly in patient tumor tissue and reveal strategies to overcome intratumoral heterogeneity.
Methods
We combine multiplexed drug perturbation in acute slice culture from freshly resected tumors with single-cell RNA sequencing (scRNA-seq) to profile transcriptome-wide drug responses in individual patients. We applied this approach to drug perturbations on slices derived from six glioblastoma (GBM) resections to identify conserved drug responses and to one additional GBM resection to identify patient-specific responses.
Results
We used scRNA-seq to demonstrate that acute slice cultures recapitulate the cellular and molecular features of the originating tumor tissue and the feasibility of drug screening from an individual tumor. Detailed investigation of etoposide, a topoisomerase poison, and the histone deacetylase (HDAC) inhibitor panobinostat in acute slice cultures revealed cell type-specific responses across multiple patients. Etoposide has a conserved impact on proliferating tumor cells, while panobinostat treatment affects both tumor and non-tumor populations, including unexpected effects on the immune microenvironment.
Conclusions
Acute slice cultures recapitulate the major cellular and molecular features of GBM at the single-cell level. In combination with scRNA-seq, this approach enables cell type-specific analysis of sensitivity to multiple drugs in individual tumors. We anticipate that this approach will facilitate pre-clinical studies that identify effective therapies for solid tumors.
Journal Article
Treatment Outcomes and Dose Rate Effects Following Gamma Knife Stereotactic Radiosurgery for Vestibular Schwannomas
2019
Abstract
BACKGROUND
Gamma Knife radiosurgery (GKRS; Elekta AB) remains a well-established treatment modality for vestibular schwannomas. Despite highly effective tumor control, further research is needed toward optimizing long-term functional outcomes. Whereas dose-rate effects may impact post-treatment toxicities given tissue dose-response relationships, potential effects remain largely unexplored.
OBJECTIVE
To evaluate treatment outcomes and potential dose-rate effects following definitive GKRS for vestibular schwannomas.
METHODS
We retrospectively reviewed 419 patients treated at our institution between 1998 and 2015, characterizing baseline demographics, pretreatment symptoms, and GKRS parameters. The cohort was divided into 2 dose-rate groups based on the median value (2.675 Gy/min). Outcomes included clinical tumor control, radiographic progression-free survival, serviceable hearing preservation, hearing loss, and facial nerve dysfunction (FND). Prognostic factors were assessed using Cox regression.
RESULTS
The study cohort included 227 patients with available follow-up. Following GKRS 2-yr and 4-yr clinical tumor control rates were 98% (95% CI: 95.6%-100%) and 96% (95% CI: 91.4%-99.6%), respectively. Among 177 patients with available radiographic follow-up, 2-yr and 4-yr radiographic progression-free survival rates were 97% (95% CI: 94.0%-100.0%) and 88% (95% CI: 81.2%-95.0%). The serviceable hearing preservation rate was 72.2% among patients with baseline Gardner-Robertson class I/II hearing and post-treatment audiological evaluations. Most patients experienced effective relief from prior headaches (94.7%), tinnitus (83.7%), balance issues (62.7%), FND (90.0%), and trigeminal nerve dysfunction (79.2%), but not hearing loss (1.0%). Whereas GKRS provided effective tumor control independently of dose rate, GKRS patients exposed to lower dose rates experienced significantly better freedom from post-treatment hearing loss and FND (P = .044).
CONCLUSION
Whereas GKRS provides excellent tumor control and effective symptomatic relief for vestibular schwannomas, dose-rate effects may impact post-treatment functional outcomes. Further research remains warranted.
Journal Article
Feasibility of fractionated gamma knife radiosurgery in the management of newly diagnosed Glioblastoma
by
Wang, Tony J. C.
,
Savacool, Michelle
,
Gallitto, Matthew
in
Biomedical and Life Sciences
,
Biomedicine
,
Biopsy
2022
Background
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with overall survival remaining poor despite ongoing efforts to explore new treatment paradigms. Given these outcomes, efforts have been made to shorten treatment time. Recent data report on the safety of CyberKnife (CK) fractionated stereotactic radiosurgery (SRS) in the management of GBM using a five-fraction regimen. The latest Gamma Knife (GK) model also supports frameless SRS, and outcomes using GK SRS in the management of primary GBM have not yet been reported.
Objective
To report on the feasibility of five-fraction SRS with the GammaKnife ICON in the management of newly diagnosed GBM.
Methods
In this single institutional study, we retrospectively reviewed all patients from our medical center from January 2017 through December 2021 who received fractionated SRS with Gamma Knife ICON for newly diagnosed GBM. Patient demographics, upfront surgical margins, molecular subtyping, radiation treatment volumes, systemic therapies, and follow-up imaging findings were extracted to report on oncologic outcomes.
Results
We identified six patients treated within the above time frame. Median age at diagnosis was 73.5 years, 66% were male, and had a median Karnofsky Performance Status (KPS) of 70. All tumors were IDH wild-type, and all but one were MGMT methylated and received concurrent temozolomide (TMZ). Within this group, progression free survival was comparable to that of historical data without significant radiation-induced toxicities.
Conclusion
Gamma Knife ICON may be discussed as a potential treatment option for select GBM patients and warrants further investigation in the prospective setting.
Journal Article
IDENTIFICATION OF A2B5+CD133− TUMOR-INITIATING CELLS IN ADULT HUMAN GLIOMAS
2008
Several studies have shown that human gliomas contain a small population of cells with stem cell-like features. It has been proposed that these \"cancer stem cells\" may be uniquely responsible for glioma formation and recurrence. However, human gliomas also contain an abundance of cells that closely resemble more differentiated glial progenitors. Animal model studies have shown that these cells also possess the capacity to form malignant gliomas.
To investigate the contributions of stem-like and progenitor-like cells in human gliomas, we used flow cytometry to characterize the expression of a cancer stem cell marker (CD133) and a glial progenitor marker (A2B5) in 25 tumors. We found that human gliomas consistently express A2B5 in a large percentage of cells (61.7 +/- 3.8%, standard error of the mean). In contrast, CD133 expression was less abundant and less consistent (14.8 +/- 3.6%, standard error of the mean), with several glioblastomas containing very few or no detectable CD133+ cells. When present, the CD133+ population was almost entirely contained within the A2B5+ population. Thus, most gliomas could be divided into three distinct populations on the basis of these markers (A2B5+CD133+, A2B5+CD133-, and A2B5-CD133-). To test the tumorigenic potential of these populations, we separated cells from six tumors by fluorescence-activated cell sorting and reinjected them into nude rats.
We found that the capacity for these different populations to form tumors varied depending on the human tumor specimen from which they were isolated. Of the six human gliomas tested, four contained A2B5+/CD133- cells that formed tumors when transplanted into nude rats, three contained A2B5+/CD133+ cells that formed tumors, and only one glioma contained A2B5-/CD133- cells with the capacity to form tumors.
Together, these results demonstrate that human gliomas contain multiple populations of cells with the capacity to form tumors and specifically identify a population of tumorigenic A2B5+ cells that are phenotypically distinct from CD133+ cells.
Journal Article
Clinical and molecular characteristics of gliosarcoma and modern prognostic significance relative to conventional glioblastoma
by
Canoll, Peter
,
Wang, Tony J C
,
Cheng-Chia, Wu
in
Brain cancer
,
Chemoradiotherapy
,
Chemotherapy
2018
Gliosarcoma is a rare histopathologic variant of glioblastoma traditionally associated with a poor prognosis. While gliosarcoma may represent a distinct clinical entity given its unique histologic composition and molecular features, its relative prognostic significance remains uncertain. While treatment of gliosarcoma generally encompasses the same standardized approach used in glioblastoma, supporting evidence is limited given its rarity. Here, we characterized 32 cases of gliosarcoma and retrospectively evaluated survival relative to 451 glioblastoma patients diagnosed during the same era within the same institution. Overall, we identified 22 primary gliosarcomas, representing 4.7% of WHO Grade IV primary glioblastomas, and 10 secondary gliosarcomas. With median age of 62, patients were predominately Caucasian (87.5%) and male (65.6%). Tumors with available molecular profiling were primarily MGMT-unmethylated (87.5%), IDH-1-preserved (100%) and EGFR wild-type (100%). Interestingly, while no significant median survival difference between primary gliosarcoma and glioblastoma was observed across the entire cohort (11.0 vs. 14.8 months, p = 0.269), median survival was worse for gliosarcoma specifically among patients who received modern temozolomide-based (TMZ) chemoradiotherapy (11.0 vs. 17.3 months, p = 0.006). Matched-pair analysis also trended toward worse median survival among gliosarcomas (11.0 vs. 19.6 months, log-rank p = 0.177, Breslow p = 0.010). While adjuvant radiotherapy (HR 0.206, p = 0.035) and TMZ-based chemotherapy (HR 0.531, p = 0.000) appeared protective, gliosarcoma emerged as a significantly poor prognostic factor on multivariate analysis (HR 3.27, p = 0.012). Collectively, our results suggest that gliosarcoma may still portend worse prognosis even with modern trimodality therapy.
Journal Article
Defining Glioblastoma Resectability Through the Wisdom of the Crowd: A Proof-of-Principle Study
2017
Abstract
BACKGROUND: Extent of resection (EOR) correlates with glioblastoma outcomes. Resectability and EOR depend on anatomical, clinical, and surgeon factors. Resectability likely influences outcome in and of itself, but an accurate measurement of resectability remains elusive. An understanding of resectability and the factors that influence it may provide a means to control a confounder in clinical trials and provide reference for decision making.
OBJECTIVE: To provide proof of concept of the use of the collective wisdom of experienced brain tumor surgeons in assessing glioblastoma resectability.
METHODS: We surveyed 13 academic tumor neurosurgeons nationwide to assess the resectability of newly diagnosed glioblastoma. Participants reviewed 20 cases, including digital imaging and communications in medicine-formatted pre- and postoperative magnetic resonance images and clinical vignettes. The selected cases involved a variety of anatomical locations and a range of EOR. Participants were asked about surgical goal, eg, gross total resection, subtotal resection (STR), or biopsy, and rationale for their decision. We calculated a “resectability index” for each lesion by pooling responses from all 13 surgeons.
RESULTS: Neurosurgeons’ individual surgical goals varied significantly (P = .015), but the resectability index calculated from the surgeons’ pooled responses was strongly correlated with the percentage of contrast-enhancing residual tumor (R = 0.817, P < .001). The collective STR goal predicted intraoperative decision of intentional STR documented on operative notes (P < .01) and nonresectable residual (P < .01), but not resectable residual.
CONCLUSION: In this pilot study, we demonstrate the feasibility of measuring the resectability of glioblastoma through crowdsourcing. This tool could be used to quantify resectability, a potential confounder in neuro-oncology clinical trials.
Journal Article
Management of asynchronous multifocal adult glioblastoma with loss of BRAFV600E -mutant clonality: a case report
by
Haile, Hannah
,
Karlovich, Esma
,
Gill, Brian J. A.
in
Antimitotic agents
,
Antineoplastic agents
,
Biomedical and Life Sciences
2025
Glioblastoma (GBM) classification involves a combination of histological and molecular signatures including IDH1/2 mutation, TERT promoter mutation, and EGFR amplification. Non-canonical mutations such as BRAF
V600E
, found in 1–2% of GBMs, activate the MEK-ERK signaling pathway. This mutation can be targeted by small molecule inhibitors, offering therapeutic potential for GBM. In this case report, we describe the management of a 67-year-old male with BRAF
V600E
-mutant GBM, who experienced both local clonal and distant non-clonal BRAF
V600E
-mutant recurrences. Initial treatment involved surgical resection followed by radiotherapy and temozolomide (TMZ). Subsequent recurrences were managed with re-resection and dabrafenib/trametinib combination therapy. Notably, a new, non-clonal BRAF
V600E
-negative tumor developed in a distant location, highlighting the challenge of clonal evolution and resistance in GBM management. The patient’s disease ultimately progressed despite multiple lines of therapy, including targeted inhibition. Identifying mechanisms of resistance and tailoring flexible treatment approaches are essential for advancing outcomes in BRAF
V600E
-mutant GBM. This case emphasizes the value of molecular profiling in personalizing treatment for patients with multifocal disease. The evolving nature of these tumors requires persistent clinical monitoring and treatment adjustments based on tissue diagnostics.
Journal Article