Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Slatery, Erin"
Sort by:
Plakoglobin is a mechanoresponsive regulator of naive pluripotency
2023
Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs will provide insight into mechanisms underlying mammalian pre-implantation development. Here, we explore this type of regulation by exerting microenvironmental control over mouse embryonic stem cells. Microfluidic encapsulation of mouse embryonic stem cells in agarose microgels stabilizes the naive pluripotency network and specifically induces expression of Plakoglobin (
Jup
), a vertebrate homolog of β-catenin. Overexpression of Plakoglobin is sufficient to fully re-establish the naive pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single-cell transcriptome profiling. Finally, we find that, in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos – further strengthening the link between Plakoglobin and naive pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naive pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell-fate transitions.
The mechanical microenvironment influences stem cell pluripotency. Here, the authors culture stem cells in microgels with controlled volumetric confinement and identify Plakoglobin as a mechanoresponsive regulator of pluripotency in mouse and human.
Journal Article
Spatial profiling of early primate gastrulation in utero
2022
Gastrulation controls the emergence of cellular diversity and axis patterning in the early embryo. In mammals, this transformation is orchestrated by dynamic signalling centres at the interface of embryonic and extraembryonic tissues
1
–
3
. Elucidating the molecular framework of axis formation in vivo is fundamental for our understanding of human development
4
–
6
and to advance stem-cell-based regenerative approaches
7
. Here we illuminate early gastrulation of marmoset embryos in utero using spatial transcriptomics and stem-cell-based embryo models. Gaussian process regression-based 3D transcriptomes delineate the emergence of the anterior visceral endoderm, which is hallmarked by conserved
(HHEX
,
LEFTY2
,
LHX1
) and primate-specific (
POSTN
,
SDC4
,
FZD5
) factors. WNT signalling spatially coordinates the formation of the primitive streak in the embryonic disc and is counteracted by
SFRP1
and
SFRP2
to sustain pluripotency in the anterior domain. Amnion specification occurs at the boundaries of the embryonic disc through
ID1
,
ID2
and
ID3
in response to BMP signalling, providing a developmental rationale for amnion differentiation of primate pluripotent stem cells (PSCs). Spatial identity mapping demonstrates that primed marmoset PSCs exhibit the highest similarity to the anterior embryonic disc, whereas naive PSCs resemble the preimplantation epiblast. Our 3D transcriptome models reveal the molecular code of lineage specification in the primate embryo and provide an in vivo reference to decipher human development.
3D transcriptomes reveal the molecular code of lineage specification in the primate embryo and provide an in vivo reference to decipher human development.
Journal Article
Origin and segregation of the human germline
2023
Human germline–soma segregation occurs during weeks 2–3 in gastrulating embryos. Although direct studies are hindered, here, we investigate the dynamics of human primordial germ cell (PGCs) specification using in vitro models with temporally resolved single-cell transcriptomics and in-depth characterisation using in vivo datasets from human and nonhuman primates, including a 3D marmoset reference atlas. We elucidate the molecular signature for the transient gain of competence for germ cell fate during peri-implantation epiblast development. Furthermore, we show that both the PGCs and amnion arise from transcriptionally similar TFAP2A-positive progenitors at the posterior end of the embryo. Notably, genetic loss of function experiments shows that TFAP2A is crucial for initiating the PGC fate without detectably affecting the amnion and is subsequently replaced by TFAP2C as an essential component of the genetic network for PGC fate. Accordingly, amniotic cells continue to emerge from the progenitors in the posterior epiblast, but importantly, this is also a source of nascent PGCs.
Journal Article
Plakoglobin is a mechanoresponsive regulator of naïve pluripotency
by
Herger, Michael
,
Connor, Ross
,
Ellermann, Anna Lena
in
Catenin
,
Cell differentiation
,
Cell fate
2022
Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs could provide insight into mechanisms underlying mammalian pre implantation development. Here, we explore this by exerting microenvironmental control over mouse embryonic stem cells (ESCs). Microfluidic encapsulation of ESCs in agarose microgels stabilized the naïve pluripotency network and specifically induced expression of Plakoglobin (Jup), a vertebrate homologue of β-catenin. Indeed, overexpression of Plakoglobin was sufficient to fully re establish the naïve pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single cell transcriptome profiling. Finally, we found that in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos — further strengthening the link between Plakoglobin and naïve pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naïve pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell fate transitions. Competing Interest Statement The authors have declared no competing interest.
Origin and segregation of the human germline
2022
Human germline-soma segregation occurs during weeks 2-3 in gastrulating embryos. While direct studies are hindered, here we investigate the dynamics of human primordial germ cell (PGCs) specification using in vitro models with temporally resolved single-cell transcriptomics and in-depth characterisation to in vivo datasets from human and non-human primates, including a 3D marmoset reference atlas. We elucidate the molecular signature for the transient gain of competence for germ cell fate during peri-implantation epiblast development. Further, we show that both the PGCs and amnion arise from transcriptionally similar TFAP2A positive progenitors at the posterior end of the embryo. Notably, genetic loss of function experiments show that TFAP2A is crucial for initiating the PGC fate without detectably affecting the amnion, and its subsequently replaced by TFAP2C as an essential component of the genetic network for PGC fate. Accordingly, amniotic cells continue to emerge from the progenitors in the posterior epiblast, but importantly, this is also a source of nascent PGCs.