Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Smeets, Monique F."
Sort by:
ATP-dependent helicase activity is dispensable for the physiological functions of Recql4
Rothmund-Thomson syndrome (RTS) is a rare autosomal recessive disorder characterized by skin rash (poikiloderma), skeletal dysplasia, small stature, juvenile cataracts, sparse or absent hair, and predisposition to specific malignancies such as osteosarcoma and hematological neoplasms. RTS is caused by germ-line mutations in RECQL4, a RecQ helicase family member. In vitro studies have identified functions for the ATP-dependent helicase of RECQL4. However, its specific role in vivo remains unclear. To determine the physiological requirement and the biological functions of Recql4 helicase activity, we generated mice with an ATP-binding-deficient knock-in mutation (Recql4K525A). Recql4K525A/K525A mice were strikingly normal in terms of embryonic development, body weight, hematopoiesis, B and T cell development, and physiological DNA damage repair. However, mice bearing two distinct truncating mutations Recql4G522Efs and Recql4R347*, that abolished not only the helicase but also the C-terminal domain, developed a profound bone marrow failure and decrease in survival similar to a Recql4 null allele. These results demonstrate that the ATP-dependent helicase activity of Recql4 is not essential for its physiological functions and that other domains might contribute to this phenotype. Future studies need to be performed to elucidate the complex interactions of RECQL4 domains and its contribution to the development of RTS.
The DNA Helicase Recql4 Is Required for Normal Osteoblast Expansion and Osteosarcoma Formation
RECQL4 mutations are associated with Rothmund Thomson Syndrome (RTS), RAPADILINO Syndrome and Baller-Gerold Syndrome. These patients display a range of benign skeletal abnormalities such as low bone mass. In addition, RTS patients have a highly increased incidence of osteosarcoma (OS). The role of RECQL4 in normal adult bone development and homeostasis is largely uncharacterized and how mutation of RECQL4 contributes to OS susceptibility is not known. We hypothesised that Recql4 was required for normal skeletal development and both benign and malignant osteoblast function, which we have tested in the mouse. Recql4 deletion in vivo at the osteoblastic progenitor stage of differentiation resulted in mice with shorter bones and reduced bone volume, assessed at 9 weeks of age. This was associated with an osteoblast intrinsic decrease in mineral apposition rate and bone formation rate in the Recql4-deficient cohorts. Deletion of Recql4 in mature osteoblasts/osteocytes in vivo, however, did not cause a detectable phenotype. Acute deletion of Recql4 in primary osteoblasts or shRNA knockdown in an osteoblastic cell line caused failed proliferation, accompanied by cell cycle arrest, induction of apoptosis and impaired differentiation. When cohorts of animals were aged long term, the loss of Recql4 alone was not sufficient to initiate OS. We then crossed the Recql4fl/fl allele to a fully penetrant OS model (Osx-Cre p53fl/fl). Unexpectedly, the Osx-Cre p53fl/flRecql4fl/fl (dKO) animals had a significantly increased OS-free survival compared to Osx-Cre p53fl/fl or Osx-Cre p53fl/flRecql4fl/+ (het) animals. The extended survival was explained when the Recql4 status in the tumors that arose was assessed, and in no case was there complete deletion of Recql4 in the dKO OS. These data provide a mechanism for the benign skeletal phenotypes of RECQL4 mutation syndromes. We propose that tumor suppression and osteosarcoma susceptibility are most likely a function of mutant, not null, alleles of RECQL4.
Fli-1 Overexpression in Hematopoietic Progenitors Deregulates T Cell Development and Induces Pre-T Cell Lymphoblastic Leukaemia/Lymphoma
The Ets transcription factor Fli-1 is preferentially expressed in hematopoietic tissues and cells, including immature T cells, but the role of Fli-1 in T cell development has not been closely examined. To address this we retrovirally overexpressed Fli-1 in various in vitro and in vivo settings and analysed its effect on T cell development. We found that Fli-1 overexpression perturbed the DN to DP transition and inhibited CD4 development whilst enhancing CD8 development both in vitro and in vivo. Surprisingly, Fli-1 overexpression in vivo eventuated in development of pre-T cell lymphoblastic leukaemia/lymphoma (pre-T LBL). Known Fli-1 target genes such as the pro-survival Bcl-2 family members were not found to be upregulated. In contrast, we found increased NOTCH1 expression in all Fli-1 T cells and detected Notch1 mutations in all tumours. These data show a novel function for Fli-1 in T cell development and leukaemogenesis and provide a new mouse model of pre-T LBL to identify treatment options that target the Fli-1 and Notch1 signalling pathways.
The Rothmund-Thomson syndrome helicase RECQL4 is essential for hematopoiesis
Mutations within the gene encoding the DNA helicase RECQL4 underlie the autosomal recessive cancer-predisposition disorder Rothmund-Thomson syndrome, though it is unclear how these mutations lead to disease. Here, we demonstrated that somatic deletion of Recql4 causes a rapid bone marrow failure in mice that involves cells from across the myeloid, lymphoid, and, most profoundly, erythroid lineages. Apoptosis was markedly elevated in multipotent progenitors lacking RECQL4 compared with WT cells. While the stem cell compartment was relatively spared in RECQL4-deficent mice, HSCs from these animals were not transplantable and even selected against. The requirement for RECQL4 was intrinsic in hematopoietic cells, and loss of RECQL4 in these cells was associated with increased replicative DNA damage and failed cell-cycle progression. Concurrent deletion of p53, which rescues loss of function in animals lacking the related helicase BLM, did not rescue BM phenotypes in RECQL4-deficient animals. In contrast, hematopoietic defects in cells from Recql4Δ/Δ mice were fully rescued by a RECQL4 variant without RecQ helicase activity, demonstrating that RECQL4 maintains hematopoiesis independently of helicase activity. Together, our data indicate that RECQL4 participates in DNA replication rather than genome stability and identify RECQL4 as a regulator of hematopoiesis with a nonredundant role compared with other RecQ helicases.
Srsf2P95H/+ co-operates with loss of TET2 to promote myeloid bias and initiate a chronic myelomonocytic leukemia-like disease in mice
Recurrent mutations in RNA splicing proteins and epigenetic regulators contribute to the development of myelodysplastic syndrome (MDS) and related myeloid neoplasms. In chronic myelomonocytic leukemia (CMML), SRSF2 mutations occur in ~50% of patients and TET2 mutations in ~60%. Clonal analysis indicates that either mutation can arise as the founder lesion. Based on human cancer genetics we crossed an inducible Srsf2P95H/+ mutant model with Tet2fl/fl mice to mutate both concomitantly in hematopoietic stem cells. At 20–24 weeks post mutation induction, we observed subtle differences in the Srsf2/Tet2 mutants compared to either single mutant. Under conditions of native hematopoiesis with aging, we see a distinct myeloid bias and monocytosis in the Srsf2/Tet2 mutants. A subset of the compound Srsf2/Tet2 mutants display an increased granulocytic and distinctive monocytic proliferation (myelomonocytic hyperplasia), with increased immature promonocytes and monoblasts and binucleate promonocytes. Exome analysis of progressed disease demonstrated mutations in genes and pathways similar to those reported in human CMML. Upon transplantation, recipients developed leukocytosis, monocytosis, and splenomegaly. We reproduce Srsf2/Tet2 co-operativity in vivo, yielding a disease with core characteristics of CMML, unlike single Srsf2 or Tet2 mutation. This model represents a significant step toward building high fidelity and genetically tractable models of CMML.
Ciliary neurotrophic factor has intrinsic and extrinsic roles in regulating B cell differentiation and bone structure
The gp130 receptor and its binding partners play a central role in cytokine signalling. Ciliary neurotrophic factor (CNTF) is one of the cytokines that signals through the gp130 receptor complex. CNTF has previously been shown to be a negative regulator of trabecular bone remodelling and important for motor neuron development. Since haematopoietic cell maintenance and differentiation is dependent on the bone marrow (BM) microenvironment, where cells of the osteoblastic lineage are important regulators, we hypothesised that CNTF may also have important roles in regulating haematopoiesis. Analysis of haematopoietic parameters in male and female Cntf −/− mice at 12 and 24 weeks of age revealed altered B lymphopoiesis. Strikingly, the B lymphocyte phenotype differed based on sex, age and also the BM microenvironment in which the B cells develop. When BM cells from wildtype mice were transplanted into Cntf −/− mice, there were minimal effects on B lymphopoiesis or bone parameters. However, when Cntf −/− BM cells were transplanted into a wildtype BM microenvironment, there were changes in both haematopoiesis and bone parameters. Our data reveal that haematopoietic cell-derived CNTF has roles in regulating BM B cell lymphopoiesis and both trabecular and cortical bone, the latter in a sex-dependent manner.
Minute amounts of helicase-deficient truncated RECQL4 are sufficient for DNA replication
RECQL4 is a member of the RecQ family of helicases, playing essential roles in DNA replication and maintaining genome integrity. Mutations in RECQL4 are linked to severe human diseases, including Rothmund-Thomson Syndrome, RAPIDALINO Syndrome, and Baller-Gerold Syndrome. However, we still do not fully understand its functions and genetic interactions. The role of the ATP-dependent helicase activity in RECQL4 remains controversial. To understand RECQL4's functions further, we conducted a genome-wide forward genetic screen using murine models that closely mimic the RECQL4 mutations found in patients with Rothmund-Thomson syndrome. Our goal was to identify loss-of-function alleles that could rescue the proliferation and viability defects associated with RECQL4 mutation. From our screening we identified the loss of KLHDC3, a substrate-binding subunit of the Cullin-RING ligase (CRL) E3, as the most significant rescue allele. KLHDC3 facilitates the ubiquitin-mediated destruction of proteins with specific C-terminal degron motifs. Its loss normalized cell proliferation and DNA replication rates in cells with mutated RECQL4. Further analysis revealed that the loss of KLHDC3 led to the stabilization of minute levels of a truncated RECQL4 protein. This RECQL4 fragment contained a neo-degron sequence specific for KLHDC3, formed after Cre-mediated recombination of the allele. Although this rescue mechanism does not apply to human RECQL4 mutations, it shows that very low chromatin-bound levels of a truncated RECQL4 protein-comprising only the N-terminal 480 amino acids, including its Sld2-like domain but lacking the ATP-dependent helicase domain and the entire C-terminal portion-are sufficient to support DNA replication in mammalian cells. These results demonstrate that the ATPase activity and helicase domain of RECQL4 are not essential for DNA replication in mammals. Furthermore, our findings suggest that there are unlikely to be monogenic loss-of-function alleles that can rescue RECQL4 mutations. This demonstrates that RECQL4 is an essential and non-redundant regulator of DNA replication and cell viability and that this activity does not require the ATP dependent helicase activity.
The DNA Helicase Recql4 Is Required for Normal Osteoblast Expansion and Osteosarcoma Formation
RECQL4 mutations are associated with Rothmund Thomson Syndrome (RTS), RAPADILINO Syndrome and Baller-Gerold Syndrome. These patients display a range of benign skeletal abnormalities such as low bone mass. In addition, RTS patients have a highly increased incidence of osteosarcoma (OS). The role of RECQL4 in normal adult bone development and homeostasis is largely uncharacterized and how mutation of RECQL4 contributes to OS susceptibility is not known. We hypothesised that Recql4 was required for normal skeletal development and both benign and malignant osteoblast function, which we have tested in the mouse. Recql4 deletion in vivo at the osteoblastic progenitor stage of differentiation resulted in mice with shorter bones and reduced bone volume, assessed at 9 weeks of age. This was associated with an osteoblast intrinsic decrease in mineral apposition rate and bone formation rate in the Recql4-deficient cohorts. Deletion of Recql4 in mature osteoblasts/osteocytes in vivo, however, did not cause a detectable phenotype. Acute deletion of Recql4 in primary osteoblasts or shRNA knockdown in an osteoblastic cell line caused failed proliferation, accompanied by cell cycle arrest, induction of apoptosis and impaired differentiation. When cohorts of animals were aged long term, the loss of Recql4 alone was not sufficient to initiate OS. We then crossed the Recql4fl/fl allele to a fully penetrant OS model (Osx-Cre p53fl/fl). Unexpectedly, the Osx-Cre p53fl/flRecql4fl/fl (dKO) animals had a significantly increased OS-free survival compared to Osx-Cre p53fl/fl or Osx-Cre p53fl/flRecql4fl/+ (het) animals. The extended survival was explained when the Recql4 status in the tumors that arose was assessed, and in no case was there complete deletion of Recql4 in the dKO OS. These data provide a mechanism for the benign skeletal phenotypes of RECQL4 mutation syndromes. We propose that tumor suppression and osteosarcoma susceptibility are most likely a function of mutant, not null, alleles of RECQL4.
Srsf2P95H/+ co-operates with loss of TET2 to promote myeloid bias and initiate a chronic myelomonocytic leukemia like disease in mice
Recurrent mutations in two pathways - the RNA spliceosome (eg. SRSF2, SF3B1, U2AF1) and epigenetic regulators (eg. DNMT3, TET2) – contribute to the development of myelodysplastic syndrome (MDS) and related myeloid neoplasms. In chronic myelomonocytic leukemia (CMML), SRSF2 mutations occur in ∼50% of patients and TET2 mutations in ∼60%, representing two of the most frequent mutations in these cancers. Clonal analysis has indicated that either mutation can arise as the founder lesion, however, our understanding of the basis for the co-operativity of these mutations in the evolution of CMML is limited. Based on human cancer genetics we crossed an inducible Srsf2P95H/+ mutant model with Tet2fl/fl mice to mutate both concomitantly (or individually) in hematopoietic stem cells. At 20-24 weeks post gene mutation, we observed subtle differences in the Srsf2/Tet2 mutants compared to either single mutant. Under conditions of native hematopoiesis with aging, we see a distinct myeloid bias and monocytosis in the Srsf2/Tet2 mutants. A subset of the compound Srsf2/Tet2 mutants display an increased granulocytic and distinctive monocytic proliferation (myelo-monocytic hyperplasia), with increased immature promonocytes and monoblasts (∼10-15% total nucleated cells), and evidence of binucleate promonocytes. Exome analysis of progressed disease demonstrates mutations in genes and pathways similar to those reported in human CMML. Upon transplantation, recipients developed leukocytosis, monocytosis and splenomegaly. This demonstrates we can reproduce Srsf2/Tet2 co-operativity in vivo, yielding a disease with core characteristics of CMML, unlike single Srsf2 or Tet2 mutation. This model represents a significant step toward building high fidelity and genetically tractable models of CMML. Srsf2P95H/+ co-operates with Tet2-/- to initiate CMML in a murine model Srsf2P95H and Tet2 null mutations synergize in the development of monocytosis
Rothmund-Thomson Syndrome-like RECQL4 truncating mutations cause a haploinsufficient low bone mass phenotype in mice
Abstract Rothmund-Thomson Syndrome (RTS) is an autosomal recessive disorder characterized by poikiloderma, sparse or absent hair, and defects in the skeletal system such as bone hypoplasia, short stature, low bone mass, and an increased incidence of osteosarcoma. RTS type 2 patients typically present with germline compound bi-allelic protein-truncating mutations of RECQL4. As existing murine models predominantly employ Recql4 null alleles, we have here attempted to more accurately model the mutational spectrum of RTS by generating mice with patient-mimicking truncating Recql4 mutations. We found that truncating mutations impaired stability and subcellular localization of RECQL4, which translated to a homozygous embryonic lethality and haploinsufficient low bone mass and reduced cortical bone thickness phenotypes. Combination of a truncating mutation with a conditional Recql4 null allele demonstrated that these defects were intrinsic to the osteoblast lineage. However, the truncating mutations did not promote tumorigenesis, even after exposure to irradiation. We also utilized murine Recql4 null cells to assess the impact of a wider range of human RECQL4 mutations using an in vitro complementation assay. We found differential effects of distinct RECQL4 mutations. While some created unstable protein products, others altered subcellular localization of the protein. Interestingly, the severity of the phenotypes correlated with the extent of protein truncation. Collectively, our results reveal that truncating RECQL4 mutations lead to the development of an osteoporosis-like phenotype through defects in early osteoblast progenitors in mice and identify RECQL4 gene dosage as a novel regulator of bone mass. Footnotes * Conflict of Interest Statement: All authors declare no conflicts of interest.