Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
146 result(s) for "Smeets, Ralf"
Sort by:
An Introduction to 3D Bioprinting: Possibilities, Challenges and Future Aspects
Bioprinting is an emerging field in regenerative medicine. Producing cell-laden, three-dimensional structures to mimic bodily tissues has an important role not only in tissue engineering, but also in drug delivery and cancer studies. Bioprinting can provide patient-specific spatial geometry, controlled microstructures and the positioning of different cell types for the fabrication of tissue engineering scaffolds. In this brief review, the different fabrication techniques: laser-based, extrusion-based and inkjet-based bioprinting, are defined, elaborated and compared. Advantages and challenges of each technique are addressed as well as the current research status of each technique towards various tissue types. Nozzle-based techniques, like inkjet and extrusion printing, and laser-based techniques, like stereolithography and laser-assisted bioprinting, are all capable of producing successful bioprinted scaffolds. These four techniques were found to have diverse effects on cell viability, resolution and print fidelity. Additionally, the choice of materials and their concentrations were also found to impact the printing characteristics. Each technique has demonstrated individual advantages and disadvantages with more recent research conduct involving multiple techniques to combine the advantages of each technique.
Impact of Dental Implant Surface Modifications on Osseointegration
Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented. Conclusion. Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions.
Applications of Metals for Bone Regeneration
The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.
Cytocompatibility of Titanium, Zirconia and Modified PEEK after Surface Treatment Using UV Light or Non-Thermal Plasma
A number of modifications have been developed in order to enhance surface cytocompatibility for prosthetic support of dental implants. Among them, ultraviolet (UV) light and non-thermal plasma (NTP) treatment are promising methods. The objective of this study was to compare the effects of UV light and NTP on machined titanium, zirconia and modified polyetheretherketone (PEEK, BioHPP) surfaces in vitro. Machined samples of titanium, zirconia and BioHPP were treated by UV light and NTP of argon or oxygen for 12 min each. Non-treated disks were set as controls. A mouse fibroblast and a human gingival fibroblast cell line were used for in vitro experiments. After 2, 24 and 48 h of incubation, the attachment, viability and cytotoxicity of cells on surfaces were assessed. Results: Titanium, zirconia and BioHPP surfaces treated by UV light and oxygen plasma were more favorable to the early attachment of soft-tissue cells than non-treated surfaces, and the number of cells on those treated surfaces was significantly increased after 2, 24 and 48 h of incubation (p < 0.05). However, the effects of argon plasma treatment on the cytocompatibility of soft tissue cells varied with the type of cells and the treated material. UV light and oxygen plasma treatments may improve the attachment of fibroblast cells on machined titanium, zirconia and PEEK surfaces, that are materials for prosthetic support of dental implants.
How does dental implant macrogeometry affect primary implant stability? A narrative review
Purpose The macrogeometry of a dental implant plays a decisive role in its primary stability. A larger diameter, a conical shape, and a roughened surface increase the contact area of the implant with the surrounding bone and thus improve primary stability. This is considered the basis for successful implant osseointegration that different factors, such as implant design, can influence. This narrative review aims to critically review macro-geometric features affecting the primary stability of dental implants. Methods For this review, a comprehensive literature search and review of relevant studies was conducted based on formulating a research question, searching the literature using keywords and electronic databases such as PubMed, Embase, and Cochrane Library to search for relevant studies. These studies were screened and selected, the study quality was assessed, data were extracted, the results were summarized, and conclusions were drawn. Results The macrogeometry of a dental implant includes its surface characteristics, size, and shape, all of which play a critical role in its primary stability. At the time of placement, the initial stability of an implant is determined by its contact area with the surrounding bone. Larger diameter and a conical shape of an implant result in a larger contact area and better primary stability. But the linear relationship between implant length and primary stability ends at 12 mm. Conclusions Several factors must be considered when choosing the ideal implant geometry, including local factors such as the condition of the bone and soft tissues at the implant site and systemic and patient-specific factors such as osteoporosis, diabetes, or autoimmune diseases. These factors can affect the success of the implant procedure and the long-term stability of an implant. By considering these factors, the surgeon can ensure the greatest possible therapeutic success and minimize the risk of implant failure. Graphical Abstract
Attachment and Osteogenic Potential of Dental Pulp Stem Cells on Non-Thermal Plasma and UV Light Treated Titanium, Zirconia and Modified PEEK Surfaces
Ultraviolet (UV) light and non-thermal plasma (NTP) treatment are chairside methods that can efficiently improve the biological aging of implant material surfaces caused by customary storage. However, the behaviors of stem cells on these treated surfaces of the implant are still unclear. This study aimed to investigate the effects of UV light and NTP treated surfaces of titanium, zirconia and modified polyetheretherketone (PEEK, BioHPP) on the attachment and osteogenic potential of human dental pulp stem cells (DPSCs) in vitro. Machined disks were treated using UV light and argon or oxygen NTP for 12 min each. Untreated disks were set as controls. DPSCs were cultured from the wisdom teeth of adults that gave informed consent. After 24 h of incubation, the attachment and viability of cells on surfaces were assessed. Cells were further osteogenically induced, alkaline phosphatase (ALP) activity was detected via a p-Nitrophenyl phosphate assay (day 14 and 21) and mineralization degree was measured using a Calcium Assay kit (day 21). UV light and NTP treated titanium, zirconia and BioHPP surfaces improved the early attachment and viability of DPSCs. ALP activity and mineralization degree of osteoinductive DPSCs were significantly increased on UV light and NTP treated surfaces of titanium, zirconia and also oxygen plasma treated Bio-HPP (p < 0.05). In conclusion, UV light and NTP treatments may improve the attachment of DPSCs on titanium, zirconia and BioHPP surfaces. Osteogenic differentiation of DPSCs can be enhanced on UV light and NTP treated surfaces of titanium and zirconia, as well as on oxygen plasma treated Bio-HPP.
How does overweight affect bone mineral density and oral health in adult hypophosphatasia?– A single center experience
Aim The aim of this study was to investigate the influence of overweight (BMI ≥ 25 (kg/m²)) on the oral health status in patients with adult hypophosphatasia (HPP). Materials and methods Throughout a retrospective assessment both oral health status and bone metabolism including dual x-ray absorptiometry (DXA) for bone mineral density (BMD) measures were analyzed. The oral health status was assessed by the decayed/missing/filled teeth index (DMFT), clinical attachment level (CAL), probing pocket depth (PPD), and the periodontal screening index (PSI). The study population was divided into two groups based on the overweight classification by BMI (Overweight = BMI ≥ 25 kg/m²; n  = 17) vs. non-overweight ( BMI < 25 kg/m²; n  = 31). Results 48 HPP patients were included in this study. Overweight HPP patients showed a significantly reduced oral health status regarding filled teeth, DMFT, PSI, PPD and periodontitis severity index compared to non-overweight HPP patients. Furthermore, overweight HPP patients revealed significantly higher DXA findings regarding BMD, T- and Z-scores. Conclusion In the present study overweight (BMI ≥ 25 (kg/m²)) is associated with a poorer oral health status and higher BMD in adult HPP. Clinical relevance Since overweight is associated with a poorer oral health status in the general population and promotes the development of periodontal disease, the findings of the present study indicate that overweight also affects oral health in adult HPP.
Horizontal augmentation techniques in the mandible: a systematic review
Purpose Placement of dental implants has evolved to be an advantageous treatment option for rehabilitation of the fully or partially edentulous mandible. In case of extensive horizontal bone resorption, the bone volume needs to be augmented prior to or during implant placement in order to obtain dental rehabilitation and maximize implant survival and success. Methods Our aim was to systematically review the available data on lateral augmentation techniques in the horizontally compromised mandible considering all grafting protocols using xenogeneic, synthetic, or allogeneic material. A computerized and manual literature search was performed for clinical studies (published January 1995 to March 2021). Results Eight studies ultimately met the inclusion criteria comprising a total of 276 procedures of xenogeneic, allogeneic, or autogenous bone graft applications in horizontal ridge defects. Particulate materials as well as bone blocks were used as grafts with a mean follow-up of 26.0 months across all included studies. Outcome measures, approaches and materials varied from study to study. A gain of horizontal bone width of the mandible with a mean of 4.8 mm was observed in seven of eight studies. All but one study, reported low bone graft failure rates of 4.4% in average. Conclusions Only limited data are available on the impact of different horizontal augmentation strategies in the mandible. The results show outcomes for xenogeneic as well as autologous bone materials for horizontal ridge augmentation of the lower jaw. The use of allogeneic bone-block grafts in combination with resorbable barrier membranes must be re-evaluated. Randomized controlled clinical trials are largely missing.
Effect of Mouth Rinsing and Antiseptic Solutions on Periodontitis Bacteria in an In Vitro Oral Human Biofilm Model
Background/Objectives: The formation of oral biofilms in periodontal pockets and around dental implants with induction of periodontitis or peri-implantitis is an increasing problem in dental health. The intelligent design of a biofilm makes the bacteria embedded in the biofilm matrix highly tolerant to antiseptic therapy, often resulting in tooth or implant loss. The question therefore arises as to which mouthwashes have eradication potential against oral biofilm. Methods: A human oral biofilm model was developed based on donated blood plasma combined with buffy coats, inoculated with oral pathogenic bacterial species found in periodontal disease (Actinomyces naeslundii, Fusobacterium nucleatum, Streptococcus mitis, and Porphyromonas gingivalis). Over a span of 7 days, we tested different mouth rinsing and antiseptic solutions (Chlorhexidine, Listerine®, NaOCl, Octenisept®, and Octenident®) covering the matured biofilm with 24 h renewal. Phosphate-buffered saline (PBS) was used as a control. Bacterial growth patterns were detected via quantitative polymerase chain reaction (qPCR) after 2, 4, and 7 days of treatment. Results: While all groups showed initial bacterial reduction, the control group demonstrated strong regrowth from day 2 to 4. Listerine showed a near-significant trend toward bacterial suppression. Additionally, strain-specific efficacy was observed, with Octenisept® being most effective against Streptococcus mitis, Octenident® and NaOCl showing superior suppression of Actinomyces naeslundii, and Listerine® outperforming other solutions in reducing Fusobacterium nucleatum. Donor-specific, individual variability further influenced treatment outcomes, with distinct trends in bacterial suppression and regrowth observed across donors. Conclusions: These findings underscore the complexity of biofilm-associated infections and highlight the importance of targeted therapeutic approaches for managing bacterial biofilms. In this experiment, the donor-specific outcomes of the antimicrobial effects of the solutions may indicate that genetic predisposition/tolerance to oral infections appears to play a critical role in the control of oral biofilms.
Raman difference spectroscopy and U-Net convolutional neural network for molecular analysis of cutaneous neurofibroma
In Neurofibromatosis type 1 (NF1), peripheral nerve sheaths tumors are common, with cutaneous neurofibromas resulting in significant aesthetic, painful and functional problems requiring surgical removal. To date, determination of adequate surgical resection margins–complete tumor removal while attempting to preserve viable tissue–remains largely subjective. Thus, residual tumor extension beyond surgical margins or recurrence of the disease may frequently be observed. Here, we introduce Shifted-Excitation Raman Spectroscopy in combination with deep neural networks for the future perspective of objective, real-time diagnosis, and guided surgical ablation. The obtained results are validated through established histological methods. In this study, we evaluated the discrimination between cutaneous neurofibroma (n = 9) and adjacent physiological tissues (n = 25) in 34 surgical pathological specimens ex vivo at a total of 82 distinct measurement loci. Based on a convolutional neural network (U-Net), the mean raw Raman spectra (n = 8,200) were processed and refined, and afterwards the spectral peaks were assigned to their respective molecular origin. Principal component and linear discriminant analysis was used to discriminate cutaneous neurofibromas from physiological tissues with a sensitivity of 100%, specificity of 97.3%, and overall classification accuracy of 97.6%. The results enable the presented optical, non-invasive technique in combination with artificial intelligence as a promising candidate to ameliorate both, diagnosis and treatment of patients affected by cutaneous neurofibroma and NF1.