Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
336 result(s) for "Smith, Albert V."
Sort by:
Heterogeneity in White Blood Cells Has Potential to Confound DNA Methylation Measurements
Epigenetic studies are commonly conducted on DNA from tissue samples. However, tissues are ensembles of cells that may each have their own epigenetic profile, and therefore inter-individual cellular heterogeneity may compromise these studies. Here, we explore the potential for such confounding on DNA methylation measurement outcomes when using DNA from whole blood. DNA methylation was measured using pyrosequencing-based methodology in whole blood (n = 50-179) and in two white blood cell fractions (n = 20), isolated using density gradient centrifugation, in four CGIs (CpG Islands) located in genes HHEX (10 CpG sites assayed), KCNJ11 (8 CpGs), KCNQ1 (4 CpGs) and PM20D1 (7 CpGs). Cellular heterogeneity (variation in proportional white blood cell counts of neutrophils, lymphocytes, monocytes, eosinophils and basophils, counted by an automated cell counter) explained up to 40% (p<0.0001) of the inter-individual variation in whole blood DNA methylation levels in the HHEX CGI, but not a significant proportion of the variation in the other three CGIs tested. DNA methylation levels in the two cell fractions, polymorphonuclear and mononuclear cells, differed significantly in the HHEX CGI; specifically the average absolute difference ranged between 3.4-15.7 percentage points per CpG site. In the other three CGIs tested, methylation levels in the two fractions did not differ significantly, and/or the difference was more moderate. In the examined CGIs, methylation levels were highly correlated between cell fractions. In summary, our analysis detects region-specific differential DNA methylation between white blood cell subtypes, which can confound the outcome of whole blood DNA methylation measurements. Finally, by demonstrating the high correlation between methylation levels in cell fractions, our results suggest a possibility to use a proportional number of a single white blood cell type to correct for this confounding effect in analyses.
Tutorial: a statistical genetics guide to identifying HLA alleles driving complex disease
The human leukocyte antigen (HLA) locus is associated with more complex diseases than any other locus in the human genome. In many diseases, HLA explains more heritability than all other known loci combined. In silico HLA imputation methods enable rapid and accurate estimation of HLA alleles in the millions of individuals that are already genotyped on microarrays. HLA imputation has been used to define causal variation in autoimmune diseases, such as type I diabetes, and in human immunodeficiency virus infection control. However, there are few guidelines on performing HLA imputation, association testing, and fine mapping. Here, we present a comprehensive tutorial to impute HLA alleles from genotype data. We provide detailed guidance on performing standard quality control measures for input genotyping data and describe options to impute HLA alleles and amino acids either locally or using the web-based Michigan Imputation Server, which hosts a multi-ancestry HLA imputation reference panel. We also offer best practice recommendations to conduct association tests to define the alleles, amino acids, and haplotypes that affect human traits. Along with the pipeline, we provide a step-by-step online guide with scripts and available software ( https://github.com/immunogenomics/HLA_analyses_tutorial ). This tutorial will be broadly applicable to large-scale genotyping data and will contribute to defining the role of HLA in human diseases across global populations. This tutorial provides guidelines for imputing human leukocyte antigen alleles, including standard quality control measures for input genotyping data and best practice recommendations for association testing and fine-mapping to identify causal alleles.
FixItFelix: improving genomic analysis by fixing reference errors
The current version of the human reference genome, GRCh38, contains a number of errors including 1.2 Mbp of falsely duplicated and 8.04 Mbp of collapsed regions. These errors impact the variant calling of 33 protein-coding genes, including 12 with medical relevance. Here, we present FixItFelix, an efficient remapping approach, together with a modified version of the GRCh38 reference genome that improves the subsequent analysis across these genes within minutes for an existing alignment file while maintaining the same coordinates. We showcase these improvements over multi-ethnic control samples, demonstrating improvements for population variant calling as well as eQTL studies.
Meta-analysis of genome-wide association data identifies two loci influencing age at menarche
André Uitterlinden and colleagues report loci at 9q31.2 and LIN28B associated with age at menarche from a meta-analysis of genome-wide association studies including 17,510 females from eight different population-based cohorts. We conducted a meta-analysis of genome-wide association data to detect genes influencing age at menarche in 17,510 women. The strongest signal was at 9q31.2 ( P = 1.7 × 10 −9 ), where the nearest genes include TMEM38B , FKTN , FSD1L , TAL2 and ZNF462 . The next best signal was near the LIN28B gene (rs7759938; P = 7.0 × 10 −9 ), which also influences adult height. We provide the first evidence for common genetic variants influencing female sexual maturation.
Association of Lipid-Related Genetic Variants with the Incidence of Atrial Fibrillation: The AFGen Consortium
Several studies have shown associations between blood lipid levels and the risk of atrial fibrillation (AF). To test the potential effect of blood lipids with AF risk, we assessed whether previously developed lipid gene scores, used as instrumental variables, are associated with the incidence of AF in 7 large cohorts. We analyzed 64,901 individuals of European ancestry without previous AF at baseline and with lipid gene scores. Lipid-specific gene scores, based on loci significantly associated with lipid levels, were calculated. Additionally, non-pleiotropic gene scores for high-density lipoprotein cholesterol (HDLc) and low-density lipoprotein cholesterol (LDLc) were calculated using SNPs that were only associated with the specific lipid fraction. Cox models were used to estimate the hazard ratio (HR) and 95% confidence intervals (CI) of AF per 1-standard deviation (SD) increase of each lipid gene score. During a mean follow-up of 12.0 years, 5434 (8.4%) incident AF cases were identified. After meta-analysis, the HDLc, LDLc, total cholesterol, and triglyceride gene scores were not associated with incidence of AF. Multivariable-adjusted HR (95% CI) were 1.01 (0.98-1.03); 0.98 (0.96-1.01); 0.98 (0.95-1.02); 0.99 (0.97-1.02), respectively. Similarly, non-pleiotropic HDLc and LDLc gene scores showed no association with incident AF: HR (95% CI) = 1.00 (0.97-1.03); 1.01 (0.99-1.04). In this large cohort study of individuals of European ancestry, gene scores for lipid fractions were not associated with incident AF.
Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations ( P  < 5 × 10 −8 ), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3 ). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets. Meta-analyses in up to 1.3 million individuals identify 87 rare-variant associations with blood pressure traits. On average, rare variants exhibit effects ~8 times larger than the mean effects of common variants and implicate candidate causal genes at associated regions.
GAWMerge expands GWAS sample size and diversity by combining array-based genotyping and whole-genome sequencing
Genome-wide association studies (GWAS) have made impactful discoveries for complex diseases, often by amassing very large sample sizes. Yet, GWAS of many diseases remain underpowered, especially for non-European ancestries. One cost-effective approach to increase sample size is to combine existing cohorts, which may have limited sample size or be case-only, with public controls, but this approach is limited by the need for a large overlap in variants across genotyping arrays and the scarcity of non-European controls. We developed and validated a protocol, Genotyping Array-WGS Merge (GAWMerge), for combining genotypes from arrays and whole-genome sequencing, ensuring complete variant overlap, and allowing for diverse samples like Trans-Omics for Precision Medicine to be used. Our protocol involves phasing, imputation, and filtering. We illustrated its ability to control technology driven artifacts and type-I error, as well as recover known disease-associated signals across technologies, independent datasets, and ancestries in smoking-related cohorts. GAWMerge enables genetic studies to leverage existing cohorts to validly increase sample size and enhance discovery for understudied traits and ancestries. GAWMerge is a computational tool that allows users to integrate SNP genotyping data from array techniques or whole-genome sequencing, providing a feasible method to leverage existing cohorts to increase sample size in genetic studies.
Assessing population differentiation and isolation from single-nucleotide polymorphism data
We introduce a new, hierarchical, model for single-nucleotide polymorphism allele frequencies in a structured population, which is naturally fitted via Markov chain Monte Carlo methods. There is one parameter for each population, closely analogous to a population-specific version of Wright's FST, which can be interpreted as measuring how isolated the relevant population has been. Our model includes the effects of single-nucleotide polymorphism ascertainment and is motivated by population genetics considerations, explicitly in the transient setting after divergence of populations, rather than as the equilibrium of a stochastic model, as is traditionally the case. For the sizes of data set that we consider the method provides good parameter estimates and considerably outperforms estimation methods analogous to those currently used in practice. We apply the method to one new and one existing human data set, each with rather different characteristics-the first consisting of three rather close European populations; the second of four populations taken from across the globe. A novelty of our framework is that the fit of the underlying model can be assessed easily, and these results are encouraging for both data sets analysed. Our analysis suggests that Iceland is more differentiated than the other two European populations (France and Utah), a finding which is consistent with the historical record, but not obvious from comparisons of simple summary statistics.
Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry ( N  = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.
Identification of common variants associated with human hippocampal and intracranial volumes
Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10(-16)) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10(-12)). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10(-7)).