Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
348 result(s) for "Smith, Carolyn L."
Sort by:
Coordinated Feeding Behavior in Trichoplax, an Animal without Synapses
Trichoplax is a small disk-shaped marine metazoan that adheres to substrates and locomotes by ciliary gliding. Despite having only six cell types and lacking synapses Trichoplax coordinates a complex sequence of behaviors culminating in external digestion of algae. We combine live cell imaging with electron microscopy to show how this is accomplished. When Trichoplax glides over a patch of algae, its cilia stop beating so it ceases moving. A subset of one of the cell types, lipophils, simultaneously secretes granules whose content rapidly lyses algae. This secretion is accurately targeted, as only lipophils located near algae release granules. The animal pauses while the algal content is ingested, and then resumes gliding. Global control of gliding is coordinated with precise local control of lipophil secretion suggesting the presence of mechanisms for cellular communication and integration.
Placozoan secretory cell types implicated in feeding, innate immunity and regulation of behavior
Placozoa are millimeter-sized, flat, irregularly shaped ciliated animals that crawl on surfaces in warm oceans feeding on biofilms, which they digest externally. They stand out from other animals due to their simple body plans. They lack organs, body cavities, muscles and a nervous system and have only seven broadly defined morphological cell types, each with a unique distribution. Analyses of single cell transcriptomes of four species of placozoans revealed greater diversity of secretory cell types than evident from morphological studies, but the locations of many of these new cell types were unknown and it was unclear which morphological cell types they represent. Furthermore, there were contradictions between the conclusions of previous studies and the single cell RNAseq studies. To address these issues, we used mRNA probes for genes encoding secretory products expressed in different metacells in Trichoplax adhaerens to localize cells in whole mounts and in dissociated cell cultures, where their morphological features could be visualized and identified. The nature and functions of their secretory granules were further investigated with electron microscopic techniques and by imaging secretion in live animals during feeding episodes. We found that two cell types participate in disintegrating prey, one resembling a lytic cell type in mammals and another combining features of zymogen gland cells and enterocytes. We identified secretory epithelial cells expressing glycoproteins or short peptides implicated in defense. We located seven peptidergic cell types and two types of mucocytes. Our findings reveal mechanisms that placozoans use to feed and protect themselves from pathogens and clues about neuropeptidergic signaling. We compare placozoan secretory cell types with cell types in other animal phyla to gain insight about general evolutionary trends in cell type diversification, as well as pathways leading to the emergence of synapomorphies.
The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes
Chloride permeation in lysosomes There has been much interest in the CLC family of membrane proteins since it has become apparent that some members are chlorine ion conducting ion channels whilst others are antiporters for chlorine and hydrogen ions. An antiporter is a membrane protein that is involved in active transport of two or more different ligands. In this paper, Graves et al . show that ClC-7 is a Cl − /H + antiporter in lysosomal membranes, whose activity maintains the correct membrane voltage during acidification of the organelle. Interestingly, this work also reinforces the idea that plasma membrane CLCs are dedicated Cl − channels, whereas 'intracellular' CLCs are antiporters. This represents direct evidence that a CLC protein is responsible for the long-hypothesized chloride permeability of lysosomal membranes. This paper shows that ClC-7 is a Cl − /H + antiporter in lysosomal membranes, the activity of which maintains the correct membrane voltage during acidification of the organelle. This work reinforces the idea that plasma membrane CLCs are Cl − channels whereas 'intracellular' CLCs are antiporters. Lysosomes are the stomachs of the cell—terminal organelles on the endocytic pathway where internalized macromolecules are degraded. Containing a wide range of hydrolytic enzymes, lysosomes depend on maintaining acidic luminal pH values for efficient function. Although acidification is mediated by a V-type proton ATPase, a parallel anion pathway is essential to allow bulk proton transport 1 , 2 . The molecular identity of this anion transporter remains unknown. Recent results of knockout experiments raise the possibility that ClC-7, a member of the CLC family of anion channels and transporters, is a contributor to this pathway in an osteoclast lysosome-like compartment, with loss of ClC-7 function causing osteopetrosis 3 . Several mammalian members of the CLC family have been characterized in detail; some (including ClC-0, ClC-1 and ClC-2) function as Cl - -conducting ion channels 4 , whereas others act as Cl - /H + antiporters (ClC-4 and ClC-5) 5 , 6 . However, previous attempts at heterologous expression of ClC-7 have failed to yield evidence of functional protein, so it is unclear whether ClC-7 has an important function in lysosomal biology, and also whether this protein functions as a Cl - channel, a Cl - /H + antiporter, or as something else entirely. Here we directly demonstrate an anion transport pathway in lysosomes that has the defining characteristics of a CLC Cl - /H + antiporter and show that this transporter is the predominant route for Cl - through the lysosomal membrane. Furthermore, knockdown of ClC-7 expression by short interfering RNA can essentially ablate this lysosomal Cl - /H + antiport activity and can strongly diminish the ability of lysosomes to acidify in vivo , demonstrating that ClC-7 is a Cl - /H + antiporter, that it constitutes the major Cl - permeability of lysosomes, and that it is important in lysosomal acidification.
Cells containing aragonite crystals mediate responses to gravity in Trichoplax adhaerens (Placozoa), an animal lacking neurons and synapses
Trichoplax adhaerens has only six cell types. The function as well as the structure of crystal cells, the least numerous cell type, presented an enigma. Crystal cells are arrayed around the perimeter of the animal and each contains a birefringent crystal. Crystal cells resemble lithocytes in other animals so we looked for evidence they are gravity sensors. Confocal microscopy showed that their cup-shaped nuclei are oriented toward the edge of the animal, and that the crystal shifts downward under the influence of gravity. Some animals spontaneously lack crystal cells and these animals behaved differently upon being tilted vertically than animals with a typical number of crystal cells. EM revealed crystal cell contacts with fiber cells and epithelial cells but these contacts lacked features of synapses. EM spectroscopic analyses showed that crystals consist of the aragonite form of calcium carbonate. We thus provide behavioral evidence that Trichoplax are able to sense gravity, and that crystal cells are likely to be their gravity receptors. Moreover, because placozoans are thought to have evolved during Ediacaran or Cryogenian eras associated with aragonite seas, and their crystals are made of aragonite, they may have acquired gravity sensors during this early era.
Placozoan fiber cells: mediators of innate immunity and participants in wound healing
Placozoa is a phylum of non-bilaterian marine animals. These small, flat organisms adhere to the substrate via their densely ciliated ventral epithelium, which mediates mucociliary locomotion and nutrient uptake. They have only six morphological cell types, including one, fiber cells, for which functional data is lacking. Fiber cells are non-epithelial cells with multiple processes. We used electron and light microscopic approaches to unravel the roles of fiber cells in Trichoplax adhaerens , a representative member of the phylum. Three-dimensional reconstructions of serial sections of Trichoplax showed that each fiber cell is in contact with several other cells. Examination of fiber cells in thin sections and observations of live dissociated fiber cells demonstrated that they phagocytose cell debris and bacteria. In situ hybridization confirmed that fiber cells express genes involved in phagocytic activity. Fiber cells also are involved in wound healing as evidenced from microsurgery experiments. Based on these observations we conclude that fiber cells are multi-purpose macrophage-like cells. Macrophage-like cells have been described in Porifera, Ctenophora, and Cnidaria and are widespread among Bilateria, but our study is the first to show that Placozoa possesses this cell type. The phylogenetic distribution of macrophage-like cells suggests that they appeared early in metazoan evolution.
The ventral epithelium of Trichoplax adhaerens deploys in distinct patterns cells that secrete digestive enzymes, mucus or diverse neuropeptides
The disk-shaped millimeter-sized marine animal, Trichoplax adhaerens, is notable because of its small number of cell types and primitive mode of feeding. It glides on substrates propelled by beating cilia on its lower surface and periodically pauses to feed on underlying microorganisms, which it digests externally. Here a combination of advanced electron and light microscopic techniques are used to take a closer look at its secretory cell types and their roles in locomotion and feeding. We identify digestive enzymes in lipophils, a cell type implicated in external digestion and distributed uniformly throughout the ventral epithelium except for a narrow zone near its edge. We find three morphologically distinct types of gland cell. The most prevalent contains and secretes mucus, which is shown to be involved in adhesion and gliding. Half of the mucocytes are arrayed in a tight row around the edge of the ventral epithelium while the rest are scattered further inside, in the region containing lipophils. The secretory granules in mucocytes at the edge label with an antibody against a neuropeptide that was reported to arrest ciliary beating during feeding. A second type of gland cell is arrayed in a narrow row just inside the row of mucocytes while a third is located more centrally. Our maps of the positions of the structurally distinct secretory cell types provide a foundation for further characterization of the multiple peptidergic cell types in Trichoplax and the microscopic techniques we introduce provide tools for carrying out these studies.
Coupling of receptor conformation and ligand orientation determine graded activity
The ability of constrained mutants of the estrogen receptor ligand-binding domain to dictate different conformations of bound partial agonists indicates that the ability of compounds to stabilize each state determines the degree of agonist activity. Small molecules stabilize specific protein conformations from a larger ensemble, enabling molecular switches that control diverse cellular functions. We show here that the converse also holds true: the conformational state of the estrogen receptor can direct distinct orientations of the bound ligand. 'Gain-of-allostery' mutations that mimic the effects of ligand in driving protein conformation allowed crystallization of the partial agonist ligand WAY-169916 with both the canonical active and inactive conformations of the estrogen receptor. The intermediate transcriptional activity induced by WAY-169916 is associated with the ligand binding differently to the active and inactive conformations of the receptor. Analyses of a series of chemical derivatives demonstrated that altering the ensemble of ligand binding orientations changes signaling output. The coupling of different ligand binding orientations to distinct active and inactive protein conformations defines a new mechanism for titrating allosteric signaling activity.
Coherent directed movement toward food modeled in Trichoplax, a ciliated animal lacking a nervous system
Trichoplax adhaerens is a small, ciliated marine animal that glides on surfaces grazing upon algae, which it digests externally. It has no muscles or nervous system and only six cell types, all but two of which are embedded in its epithelium. The epithelial cells are joined by apical adherens junctions; neither tight junctions nor gap junctions are present. Monociliated epithelial cells on the lower surface propel gliding. The cilia beat regularly, but asynchronously, and transiently contact the substrate with each stroke. The animal moves in random directions in the absence of food. We show here that it exhibits chemotaxis, moving preferentially toward algae embedded in a disk of agar. We present a mathematical model to explain how coherent, directional movements could arise from the collective actions of a set of ciliated epithelial cells, each independently sensing and responding to a chemoattractant gradient. The model incorporates realistic values for viscoelastic properties of cells and produces coordinated movements and changes in body shape that resemble the actual movements of the animal. The model demonstrates that an animal can move coherently in search of food without any need for chemical signaling between cells and introduces a different approach to modeling behavior in primitive multicellular organisms.
Insights into the evolution of digestive systems from studies of Trichoplax adhaerens
Trichoplax, a member of the phylum Placozoa, is a tiny ciliated marine animal that glides on surfaces feeding on algae and cyanobacteria. It stands out from other animals in that it lacks an internal digestive system and, instead, digests food trapped under its lower surface. Here we review recent work on the phenotypes of its six cell types and their roles in digestion and feeding behavior. Phylogenomic analyses place Placozoa as sister to Eumetazoa, the clade that includes Cnidaria and Bilateria. Comparing the phenotypes of cells in Trichoplax to those of cells in the digestive epithelia of Eumetazoa allows us to make inferences about the cell types and mode of feeding of their ancestors. From our increasingly mechanistic understanding of feeding in Trichoplax, we get a glimpse into how primitive animals may have hunted and consumed food prior to the evolution of neurons, muscles, and internal digestive systems.
Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons
Different types of cargo vesicles containing presynaptic proteins are transported from the nerve cell body to the nerve terminal, and participate in the formation of active zones. However, the identity of the membranous cargoes and the nature of the motor–cargo interactions remain unsolved. Here, we report the identification of a syntaxin-1-binding protein named syntabulin. Syntabulin attaches syntaxin-containing vesicles to microtubules and migrates with syntaxin within the processes of hippocampal neurons. Knock-down of syntabulin expression with targeted small interfering RNAs (siRNAs) or interference with the syntabulin–syntaxin interaction inhibit attachment of syntaxin-cargo vesicles to microtubules and reduce syntaxin-1 distribution in neuronal processes. Furthermore, conventional kinesin I heavy chain binds to syntabulin and associates with syntabulin-linked syntaxin vesicles in vivo . These findings suggest that syntabulin functions as a linker molecule that attaches syntaxin-cargo vesicles to kinesin I, enabling the transport of syntaxin-1 to neuronal processes.