Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
3,141 result(s) for "Smith, Richard H"
Sort by:
Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss
Hearing loss is the most common sensory deficit in humans, affecting 1 in 500 newborns. Due to its genetic heterogeneity, comprehensive diagnostic testing has not previously been completed in a large multiethnic cohort. To determine the aggregate contribution inheritance makes to non-syndromic hearing loss, we performed comprehensive clinical genetic testing with targeted genomic enrichment and massively parallel sequencing on 1119 sequentially accrued patients. No patient was excluded based on phenotype, inheritance or previous testing. Testing resulted in identification of the underlying genetic cause for hearing loss in 440 patients (39 %). Pathogenic variants were found in 49 genes and included missense variants (49 %), large copy number changes (18 %), small insertions and deletions (18 %), nonsense variants (8 %), splice-site alterations (6 %), and promoter variants (<1 %). The diagnostic rate varied considerably based on phenotype and was highest for patients with a positive family history of hearing loss or when the loss was congenital and symmetric. The spectrum of implicated genes showed wide ethnic variability. These findings support the more efficient utilization of medical resources through the development of evidence-based algorithms for the diagnosis of hearing loss.
C3 glomerulopathy — understanding a rare complement-driven renal disease
The C3 glomerulopathies are a group of rare kidney diseases characterized by complement dysregulation occurring in the fluid phase and in the glomerular microenvironment, which results in prominent complement C3 deposition in kidney biopsy samples. The two major subgroups of C3 glomerulopathy — dense deposit disease (DDD) and C3 glomerulonephritis (C3GN) — have overlapping clinical and pathological features suggestive of a disease continuum. Dysregulation of the complement alternative pathway is fundamental to the manifestations of C3 glomerulopathy, although terminal pathway dysregulation is also common. Disease is driven by acquired factors in most patients — namely, autoantibodies that target the C3 or C5 convertases. These autoantibodies drive complement dysregulation by increasing the half-life of these vital but normally short-lived enzymes. Genetic variation in complement-related genes is a less frequent cause. No disease-specific treatments are available, although immunosuppressive agents and terminal complement pathway blockers are helpful in some patients. Unfortunately, no treatment is universally effective or curative. In aggregate, the limited data on renal transplantation point to a high risk of disease recurrence (both DDD and C3GN) in allograft recipients. Clinical trials are underway to test the efficacy of several first-generation drugs that target the alternative complement pathway.This Review presents our current understanding of C3 glomerulopathy. Smith et al. discuss the histopathological diagnosis and the crucial pathogenic role of complement dysregulation. Genetic and acquired drivers of C3 glomerulopathy, potential biomarkers and available treatments are highlighted.
Congenital hearing loss
Congenital hearing loss (hearing loss that is present at birth) is one of the most prevalent chronic conditions in children. In the majority of developed countries, neonatal hearing screening programmes enable early detection; early intervention will prevent delays in speech and language development and has long-lasting beneficial effects on social and emotional development and quality of life. A diagnosis of hearing loss is usually followed by a search for an underlying aetiology. Congenital hearing loss might be attributed to environmental and prenatal factors, which prevail in low-income settings; congenital infections, particularly cytomegalovirus infection, are also a common risk factor for hearing loss. Genetic causes probably account for the majority of cases in developed countries; mutations can affect any component of the hearing pathway, in particular, inner ear homeostasis (endolymph production and maintenance) and mechano-electrical transduction (the conversion of a mechanical stimulus into electrochemical activity). Once the underlying cause of hearing loss is established, it might direct therapeutic decision making and guide prevention and (genetic) counselling. Management options include specific antimicrobial therapies, surgical treatment of craniofacial abnormalities and implantable or non-implantable hearing devices. An improved understanding of the pathophysiology and molecular mechanisms that underlie hearing loss and increased awareness of recent advances in genetic testing will promote the development of new treatment and screening strategies. Viral infections during pregnancy and acquired genetic mutations account for the majority of cases of congenital hearing loss. Early detection of this chronic condition, through neonatal hearing screening programmes, greatly benefits the cognitive and social development of the child.
Assessing variants of uncertain significance implicated in hearing loss using a comprehensive deafness proteome
Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are “variants of uncertain significance” (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆GFold) for all DVD missense variants. We find that 5772 VUSs have a large, destabilizing ∆∆GFold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3456 VUSs are likely pathogenic at a probability of 99.0%. Of the 224 genes in the DVD, 166 genes (74%) exhibit one or more missense variants predicted to cause a pathogenic change in protein folding stability. The VUSs prioritized here affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.
Baculovirus: an Insect-derived Vector for Diverse Gene Transfer Applications
Insect-derived baculoviruses have emerged as versatile and safe workhorses of biotechnology. Baculovirus expression vectors (BEVs) have been applied widely for crop and forest protection, as well as safe tools for recombinant protein production in insect cells. However, BEVs ability to efficiently transduce noninsect cells is still relatively poorly recognized despite the fact that efficient baculovirus-mediated in vitro and ex vivo gene delivery into dormant and dividing vertebrate cells of diverse origin has been described convincingly by many authors. Preliminary proof of therapeutic potential has also been established in preclinical studies. This review summarizes the advantages and current status of baculovirus-mediated gene delivery. Stem cell transduction, preclinical animal studies, tissue engineering, vaccination, cancer gene therapy, viral vector production, and drug discovery are covered.
Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing
The extreme genetic heterogeneity of nonsyndromic hearing loss (NSHL) makes genetic diagnosis expensive and time consuming using available methods. To assess the feasibility of target-enrichment and massively parallel sequencing technologies to interrogate all exons of all genes implicated in NSHL, we tested nine patients diagnosed with hearing loss. Solid-phase (Nimble-Gen) or solution-based (SureSelect) sequence capture, followed by 454 or Illumina sequencing, respectively, were compared. Sequencing reads were mapped using GSMAPPER, BFAST, and BOWTIE, and pathogenic variants were identified using a custom-variant calling and annotation pipeline (ASAP) that incorporates publicly available in silico pathogenicity prediction tools (SIFT, BLOSUM, Polyphen2, and Align-GVGD). Samples included one negative control, three positive controls (one biological replicate), and six unknowns (10 samples total), in which we genotyped 605 single nucleotide polymorphisms (SNPs) by Sanger sequencing to measure sensitivity and specificity for SureSelect-Illumina and NimbleGen-454 methods at saturating sequence coverage. Causative mutations were identified in the positive controls but not in the negative control. In five of six idiopathic hearing loss patients we identified the pathogenic mutation. Massively parallel sequencing technologies provide sensitivity, specificity, and reproducibility at levels sufficient to perform genetic diagnosis of hearing loss.
A Mutation in the Srrm4 Gene Causes Alternative Splicing Defects and Deafness in the Bronx Waltzer Mouse
Sensory hair cells are essential for hearing and balance. Their development from epithelial precursors has been extensively characterized with respect to transcriptional regulation, but not in terms of posttranscriptional influences. Here we report on the identification and functional characterization of an alternative-splicing regulator whose inactivation is responsible for defective hair-cell development, deafness, and impaired balance in the spontaneous mutant Bronx waltzer (bv) mouse. We used positional cloning and transgenic rescue to locate the bv mutation to the splicing factor-encoding gene Ser/Arg repetitive matrix 4 (Srrm4). Transcriptome-wide analysis of pre-mRNA splicing in the sensory patches of embryonic inner ears revealed that specific alternative exons were skipped at abnormally high rates in the bv mice. Minigene experiments in a heterologous expression system confirmed that these skipped exons require Srrm4 for inclusion into the mature mRNA. Sequence analysis and mutagenesis experiments showed that the affected transcripts share a novel motif that is necessary for the Srrm4-dependent alternative splicing. Functional annotations and protein-protein interaction data indicated that the encoded proteins cluster in the secretion and neurotransmission pathways. In addition, the splicing of a few transcriptional regulators was found to be Srrm4 dependent, and several of the genes known to be targeted by these regulators were expressed at reduced levels in the bv mice. Although Srrm4 expression was detected in neural tissues as well as hair cells, analyses of the bv mouse cerebellum and neocortex failed to detect splicing defects. Our data suggest that Srrm4 function is critical in the hearing and balance organs, but not in all neural tissues. Srrm4 is the first alternative-splicing regulator to be associated with hearing, and the analysis of bv mice provides exon-level insights into hair-cell development.
Screening of deafness-causing DNA variants that are common in patients of European ancestry using a microarray-based approach
The unparalleled heterogeneity in genetic causes of hearing loss along with remarkable differences in prevalence of causative variants among ethnic groups makes single gene tests technically inefficient. Although hundreds of genes have been reported to be associated with nonsyndromic hearing loss (NSHL), GJB2, GJB6, SLC26A4, and mitochondrial (mt) MT-RNR1 and MTTS are the major contributors. In order to provide a faster, more comprehensive and cost effective assay, we constructed a DNA fluidic array, CapitalBioMiamiOtoArray, for the detection of sequence variants in five genes that are common in most populations of European descent. They consist of c.35delG, p.W44C, p.L90P, c.167delT (GJB2); 309kb deletion (GJB6); p.L236P, p.T416P (SLC26A4); and m.1555A>G, m.7444G>A (mtDNA). We have validated our hearing loss array by analyzing a total of 160 DNAs samples. Our results show 100% concordance between the fluidic array biochip-based approach and the established Sanger sequencing method, thus proving its robustness and reliability at a relatively low cost.