Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
121 result(s) for "Smith, Shafer"
Sort by:
Vertical eddy iron fluxes support primary production in the open Southern Ocean
The primary productivity of the Southern Ocean ecosystem is limited by iron availability. Away from benthic and aeolian sources, iron reaches phytoplankton primarily when iron-rich subsurface waters enter the euphotic zone. Here, eddy-resolving physical/biogeochemical simulations of a seasonally-forced, open-Southern-Ocean ecosystem reveal that mesoscale and submesoscale isopycnal stirring effects a cross-mixed-layer-base transport of iron that sustains primary productivity. The eddy-driven iron supply and consequently productivity increase with model resolution. We show the eddy flux can be represented by specific well-tuned eddy parametrizations. Since eddy mixing rates are sensitive to wind forcing and large-scale hydrographic changes, these findings suggest a new mechanism for modulating the Southern Ocean biological pump on climate timescales. The Southern Ocean is an important sink of carbon via the biological pump. Here authors run high-resolution physical/biogeochemical simulations of an open-Southern Ocean ecosystem forced with a realistic seasonal cycle and confirm that (sub)mesoscale iron transport across the mixing-layer base sustains primary productivity.
The role of submesoscale currents in structuring marine ecosystems
From microbes to large predators, there is increasing evidence that marine life is shaped by short-lived submesoscales currents that are difficult to observe, model, and explain theoretically. Whether and how these intense three-dimensional currents structure the productivity and diversity of marine ecosystems is a subject of active debate. Our synthesis of observations and models suggests that the shallow penetration of submesoscale vertical currents might limit their impact on productivity, though ecological interactions at the submesoscale may be important in structuring oceanic biodiversity. Short-lived three-dimensional submesoscale currents, responsible for swirling ocean color chlorophyll filaments, have long been thought to affect productivity. Current research suggests they may not be effective in enhancing phytoplankton growth, but may have important contributions to biodiversity.
Scales, Growth Rates, and Spectral Fluxes of Baroclinic Instability in the Ocean
An observational, modeling, and theoretical study of the scales, growth rates, and spectral fluxes of baroclinic instability in the ocean is presented, permitting a discussion of the relation between the local instability scale; the first baroclinic deformation scale Rdef; and the equilibrated, observed eddy scale. The geography of the large-scale, meridional quasigeostrophic potential vorticity (QGPV) gradient is mapped out using a climatological atlas, and attention is drawn to asymmetries between midlatitude eastward currents and subtropical return flows, the latter of which has westward and eastward zonal velocity shears. A linear stability analysis of the climatology, under the “local approximation,” yields the growth rates and scales of the fastest-growing modes. Fastest-growing modes on eastward-flowing currents, such as the Kuroshio and the Antarctic Circumpolar Current, have a scale somewhat larger (by a factor of about 2) than Rdef. They are rapidly growing (e folding in 1–3 weeks) and deep reaching, and they can be characterized by an interaction between interior QGPV gradients, with a zero crossing in the QGPV gradient at depth. In contrast, fastest-growing modes in the subtropical return flows (as well as much of the gyre interiors) have a scale smaller than Rdef (by a factor of between 0.5 and 1), grow more slowly (e-folding scale of several weeks), and owe their existence to the interaction of a positive surface QGPV gradient and a negative gradient beneath. These predictions of linear theory under the local approximation are then compared to observed eddy length scales and spectral fluxes using altimetric data. It is found that the scale of observed eddies is some 2–3 times larger than the instability scale, indicative of a modest growth in horizontal scale. No evidence of an inverse cascade over decades in scale is found. Outside of a tropical band, the eddy scale varies with latitude along with but somewhat less strongly than Rdef. Finally, exactly the same series of calculations is carried out on fields from an idealized global eddying model, enabling study in a more controlled setting. Broadly similar conclusions are reached, thus reinforcing inferences made from the data.
Frequency diffusion of waves by unsteady flows
The production of broadband frequency spectra from narrowband wave forcing in geophysical flows remains an open problem. Here we consider a related theoretical problem that points to the role of time-dependent vortical flow in producing this effect. Specifically, we apply multi-scale analysis to the transport equation of wave action density in a homogeneous stationary random background flow under the Wentzel–Kramers–Brillouin approximation. We find that, when some time dependence in the mean flow is retained, wave action density diffuses both along and across surfaces of constant frequency in wavenumber–frequency space; this stands in contrast to previous results showing that diffusion occurs only along constant-frequency surfaces when the mean flow is steady. A self-similar random background velocity field is used to show that the magnitude of this frequency diffusion depends non-monotonically on the time scale of variation of the velocity field. Numerical solutions of the ray-tracing equations for rotating shallow water illustrate and confirm our theoretical predictions. Notably, the mean intrinsic wave frequency increases in time, which by wave action conservation implies a concomitant increase of wave energy at the expense of the energy of the background flow.
The Production and Dissipation of Compensated Thermohaline Variance by Mesoscale Stirring
Temperature–salinity profiles from the region studied in the North Atlantic Tracer Release Experiment (NATRE) show large isopycnal excursions at depths just below the thermocline. It is proposed here that these thermohaline filaments result from the mesoscale stirring of large-scale temperature and salinity gradients by geostrophic turbulence, resulting in a direct cascade of thermohaline variance to small scales. This hypothesis is investigated as follows: Measurements from NATRE are used to generate mean temperature, salinity, and shear profiles. The mean stratification and shear are used as the background state in a high-resolution horizontally homogeneous quasigeostrophic model. The mean state is baroclinically unstable, and the model produces a vigorous eddy field. Temperature and salinity are stirred laterally in each density layer by the geostrophic velocity and vertical advection is by the ageostrophic velocity. The simulated temperature–salinity diagram exhibits fluctuations at depths just below the thermocline of similar magnitude to those found in the NATRE data. It is shown that vertical diffusion is sufficient to absorb the laterally driven cascade of tracer variance through an amplification of filamentary slopes by small-scale shear. These results suggest that there is a strong coupling between vertical mixing and horizontal stirring in the ocean at scales below the deformation radius.
Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity
The decline in oxygen supply to the ocean associated with global warming is expected to expand oxygen minimum zones (OMZs). This global trend can be attenuated or amplified by regional processes. In the Arabian Sea, the world's thickest OMZ is highly vulnerable to changes in the Indian monsoon wind. Evidence from paleo-records and future climate projections indicates strong variations of the Indian monsoon wind intensity over climatic timescales. Yet, the response of the OMZ to these wind changes remains poorly understood and its amplitude and timescale unexplored. Here, we investigate the impacts of perturbations in Indian monsoon wind intensity (from −50 to +50 %) on the size and intensity of the Arabian Sea OMZ, and examine the biogeochemical and ecological implications of these changes. To this end, we conducted a series of eddy-resolving simulations of the Arabian Sea using the Regional Ocean Modeling System (ROMS) coupled to a nitrogen-based nutrient–phytoplankton–zooplankton–detritus (NPZD) ecosystem model that includes a representation of the O2 cycle. We show that the Arabian Sea productivity increases and its OMZ expands and deepens in response to monsoon wind intensification. These responses are dominated by the perturbation of the summer monsoon wind, whereas the changes in the winter monsoon wind play a secondary role. While the productivity responds quickly and nearly linearly to wind increase (i.e., on a timescale of years), the OMZ response is much slower (i.e., a timescale of decades). Our analysis reveals that the OMZ expansion at depth is driven by increased oxygen biological consumption, whereas its surface weakening is induced by increased ventilation. The enhanced ventilation favors episodic intrusions of oxic waters in the lower epipelagic zone (100–200 m) of the western and central Arabian Sea, leading to intermittent expansions of marine habitats and a more frequent alternation of hypoxic and oxic conditions there. The increased productivity and deepening of the OMZ also lead to a strong intensification of denitrification at depth, resulting in a substantial amplification of fixed nitrogen depletion in the Arabian Sea. We conclude that changes in the Indian monsoon can affect, on longer timescales, the large-scale biogeochemical cycles of nitrogen and carbon, with a positive feedback on climate change in the case of stronger winds. Additional potential changes in large-scale ocean ventilation and stratification may affect the sensitivity of the Arabian Sea OMZ to monsoon intensification.
Quasigeostrophic Turbulence with Explicit Surface Dynamics: Application to the Atmospheric Energy Spectrum
The horizontal wavenumber spectra of wind and temperature near the tropopause have a steep −3 slope at synoptic scales and a shallower −5/3 slope at mesoscales, with a transition between the two regimes at a wavelength of about 450 km. Here it is demonstrated that a quasigeostrophic model driven by baroclinic instability exhibits such a transition near its upper boundary (analogous to the tropopause) when surface temperature advection at that boundary is properly resolved and forced. To accurately represent surface advection at the upper and lower boundaries, the vertical structure of the model streamfunction is decomposed into four parts, representing the interior flow with the first two neutral modes, and each surface with its Green’s function solution, resulting in a system with four prognostic equations. Mean temperature gradients are applied at each surface, and a mean potential vorticity gradient consisting both of β and vertical shear is applied in the interior. The system exhibits three fundamental types of baroclinic instability: interactions between the upper and lower surfaces (Eady type), interactions between one surface and the interior (Charney type), and interactions between the barotropic and baroclinic interior modes (Phillips type). The turbulent steady states that result from each of these instabilities are distinct, and those of the former two types yield shallow kinetic energy spectra at small scales along those boundaries where mean temperature gradients are present. When both mean interior and surface gradients are present, the surface spectrum reflects a superposition of the interior-dominated −3 slope cascade at large scales, and the surface-dominated −5/3 slope cascade at small scales. The transition wavenumber depends linearly on the ratio of the interior potential vorticity gradient to the surface temperature gradient, and scales with the inverse of the deformation scale when β = 0.
Mean flows induced by inertia–gravity waves in a vertically confined domain
The Lagrangian-mean motion of fluid particles induced by horizontally localized small-amplitude wavepackets of vertically trapped inertia–gravity waves is computed analytically, at second order in wave amplitude, and the results are supported by direct nonlinear numerical simulations. The leading-order motion is assumed to be inertia–gravity waves, which is applicable to oceanic mesoscale flows in regions where wave activity is as strong as or stronger than the balanced flow. The analytical computation is based on time-dependent asymptotic wave–mean interaction theory, and the numerical simulation uses a Galerkin-truncated $f$ -plane nonlinear hydrostatic Boussinesq model that retains the barotropic mode and two baroclinic modes (vertical wavenumbers 0, $m$ and $2m$ ), this being the minimal set on which consistent wave–mean interactions can take place. Two novel dynamical effects are revealed: First, we find that the barotropic component robustly dominates the Lagrangian-mean flow response, which is contrary to earlier findings for the same problem. Second, we discovered a new wavepacket regime in which the baroclinic mean-flow response consists of the persistent radiation of resonantly forced secondary internal waves. The latter effect occurs in an oceanically accessible parameter regime.
Wave-induced mean flows in rotating shallow water with uniform potential vorticity
Theoretical and numerical computations of the wave-induced mean flow in rotating shallow water with uniform potential vorticity are presented, with an eye towards applications in small-scale oceanography where potential-vorticity anomalies are often weak compared to the waves. The asymptotic computations are based on small-amplitude expansions and time averaging over the fast wave scale to define the mean flow. Importantly, we do not assume that the mean flow is balanced, i.e. we compute the full mean-flow response at leading order. Particular attention is paid to the concept of modified diagnostic relations, which link the leading-order Lagrangian-mean velocity field to certain wave properties known from the linear solution. Both steady and unsteady wave fields are considered, with specific examples that include propagating wavepackets and monochromatic standing waves. Very good agreement between the theoretical predictions and direct numerical simulations of the nonlinear system is demonstrated. In particular, we extend previous studies by considering the impact of unsteady wave fields on the mean flow, and by considering the total kinetic energy of the mean flow as a function of the rotation rate. Notably, monochromatic standing waves provide an explicit counterexample to the often observed tendency of the mean flow to decrease monotonically with the background rotation rate.
A Surface-Aware Projection Basis for Quasigeostrophic Flow
Recent studies indicate that altimetric observations of the ocean’s mesoscale eddy field reflect the combined influence of surface buoyancy and interior potential vorticity anomalies. The former have a surface-trapped structure, while the latter are often well represented by the barotropic and first baroclinic modes. To assess the relative importance of each contribution to the signal, it is useful to project the observed field onto a set of modes that separates their influence in a natural way. However, the surface-trapped dynamics are not well represented by standard baroclinic modes; moreover, they are dependent on horizontal scale. Here the authors derive a modal decomposition that results from the simultaneous diagonalization of the energy and a generalization of potential enstrophy that includes contributions from the surface buoyancy fields. This approach yields a family of orthonormal bases that depend on two parameters; the standard baroclinic modes are recovered in a limiting case, while other choices provide modes that represent surface and interior dynamics in an efficient way. For constant stratification, these modes consist of symmetric and antisymmetric exponential modes that capture the surface dynamics and a series of oscillating modes that represent the interior dynamics. Motivated by the ocean, where shears are concentrated near the upper surface, the authors consider the special case of a quiescent lower surface. In this case, the interior modes are independent of wavenumber, and there is a single exponential surface mode that replaces the barotropic mode. The use and effectiveness of these modes is demonstrated by projecting the energy in a set of simulations of baroclinic turbulence.