Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
150 result(s) for "Smith, Val H."
Sort by:
Responses of Estuarine and Coastal Marine Phytoplankton to Nitrogen and Phosphorus Enrichment
A cross-ecosystem comparison of data obtained from 92 coastal zone ecosystems worldwide revealed a strong positive response of marine phytoplankton biomass to nutrient enrichment that is highly consistent with the general patterns reported previously in the limnological literature for freshwater lakes and reservoirs. Average concentrations of chlorophyll a in estuarine and coastal marine systems were strongly dependent on the mean concentrations of total nitrogen and total phosphorus in the water column. Moreover, as is true of freshwater ecosystems, the identity of the primary growth-limiting nutrient for marine phytoplankton appeared to be generally predictable from water-column total nitrogen : total phosphorus (TN : TP) ratios. This similarity in physiological response to nutrients likely derives from the shared evolutionary histories of marine and freshwater phytoplankton.
Eutrophication of freshwater and coastal marine ecosystems a global problem
Humans now strongly influence almost every major aquatic ecosystem, and their activities have dramatically altered the fluxes of growth-limiting nutrients from the landscape to receiving waters. Unfortunately, these nutrient inputs have had profound negative effects upon the quality of surface waters worldwide. This review examines how eutrophication influences the biomass and species composition of algae in both freshwater and costal marine systems. An overview of recent advances in algae-related eutrophication research is presented. In freshwater systems, a summary is presented for lakes and reservoirs; streams and rivers; and wetlands. A brief summary is also presented for estuarine and coastal marine ecosystems. Eutrophication causes predictable increases in the biomass of algae in lakes and reservoirs; streams and rivers; wetlands; and coastal marine ecosystems. As in lakes, the response of suspended algae in large rivers to changes in nutrient loading may be hysteretic in some cases. The inhibitory effects of high concentrations of inorganic suspended solids on algal growth, which can be very evident in many reservoirs receiving high inputs of suspended soils, also potentially may occur in turbid rivers. Consistent and predictable eutrophication-caused increases in cyanobacterial dominance of phytoplankton have been reported worldwide for natural lakes, and similar trends are reported here both for phytoplankton in turbid reservoirs, and for suspended algae in a large river A remarkable unity is evident in the global response of algal biomass to nitrogen and phosphorus availability in lakes and reservoirs; wetlands; streams and rivers; and coastal marine waters. The species composition of algal communities inhabiting the water column appears to respond similarly to nutrient loading, whether in lakes, reservoirs, or rivers. As is true of freshwater ecosystems, the recent literature suggests that coastal marine ecosystems will respond positively to nutrient loading control efforts. Our understanding of freshwater eutrophication and its effects on algal-related water quality is strong and is advancing rapidly. However, our understanding of the effects of eutrophication on estuarine and coastal marine ecosystems is much more limited, and this gap represents an important future research need. Although coastal systems can be hydrologically complex, the biomass of marine phytoplankton nonetheless appears to respond sensitively and predictably to changes in the external supplies of nitrogen and phosphorus. These responses suggest that efforts to manage nutrient inputs to the seas will result in significant improvements in coastal zone water quality. Additional new efforts should be made to develop models that quantitatively link ecosystem-level responses to nutrient loading in both freshwater and marine systems.
Eutrophication of Freshwater and Marine Ecosystems
Initial understanding of the links between nutrients and aquatic productivity originated in Europe in the early 1900s, and our knowledge base has expanded greatly during the past 40 yr. This explosion of eutrophication-related research has made it unequivocally clear that a comprehensive strategy to prevent excessive amounts of nitrogen and phosphorus from entering our waterways is needed to protect our lakes, rivers, and coasts from water quality deterioration. However, despite these very significant advances, cultural eutrophication remains one of the foremost problems for protecting our valuable surface water resources. The papers in this special issue provide a valuable cross section and synthesis of our current understanding of both freshwater and marine eutrophication science. They also serve to identify gaps in our knowledge and will help to guide future research.
Genetically Engineered Algae for Biofuels: A Key Role for Ecologists
Genetically engineered (GE) microalgae are nearing commercial release for biofuels production without sufficient public information or ecological studies to investigate their possible risks. Blue-green algae (cyanobacteria) and eukaryotic green algae are likely to disperse widely from open ponds and, on a smaller scale with lower probability, from enclosed photobioreactors. With powerful molecular techniques, thousands of algal strains have been screened, hybridized, and redesigned to grow quickly and tolerate extreme conditions. Some biologists do not expect GE microalgae to survive in the wild. However, thorough ecological and evolutionary assessments are needed to test this assumption and, if the algae do survive, to confirm that their persistence is highly unlikely to cause environmental harm. Cyanobacteria are especially difficult to evaluate because of the chance of horizontal gene transfer with unrelated microbes. Before novel GE algae enter the environment, key biosafety and environmental risk issues should be formally addressed by teams of experts that include ecologists.
Microbial biogeography: putting microorganisms on the map
In recent years, the question of whether microbial life exhibits biogeographical patterns has come under increased scrutiny. In this article, leading scientists in the field review the biogeography of microorganisms and provide a framework for assessing the impact of environmental and historical processes that contribute to microbial biodiversity. Key Points Since the eighteenth century, biologists have investigated plant and animal biogeography, but only recently have the distributions of microorganisms been examined. We consider microbial biogeography in light of habitats types (the contemporary environment) and provinces (legacies of historical events such as dispersal limitation). This framework is useful for addressing whether the distributions of microbial taxa, like those of macroorganisms, reflect the influences of both contemporary environmental conditions and past events. We review a growing body of literature that suggests that microbial assemblages are not only influenced by their current environment, but that some display a degree of provincialism — evidence that these microbial assemblages have diverged and are maintained by genetic isolation. We also find that the relative influence of historical versus environmental factors appears to be related to the scale of sampling. As a first hypothesis, we suggest that the same processes that influence macroorganism biogeography (colonization, diversification and extinction) also apply to microbial life, but that their rates scale with body size, or for single-celled organisms, cell size. Therefore, we use the idea of allometry as a structure for discussing the rates of biogeographic processes in microorganisms. We conclude that the rates of biogeographic processes probably vary more widely for microorganisms of a given size than for macroorganisms of a given size. To tackle the mechanisms generating microbial biogeographic patterns, we recommend that new microbial biogeography studies should systematically sample and record data from various distances, habitats and environmental conditions. We review the biogeography of microorganisms in light of the biogeography of macroorganisms. A large body of research supports the idea that free-living microbial taxa exhibit biogeographic patterns. Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity. However, recent studies also dispute the idea that 'everything is everywhere'. We also consider how the processes that generate and maintain biogeographic patterns in macroorganisms could operate in the microbial world.
Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams
Knowledge of factors limiting benthic algal (periphyton) biomass is central to understanding energy flow in stream ecosystems and stream eutrophication. We used several data sets to determine how water column nutrients and nonnutrient factors are linked to periphytic biomass and if the ecoregion concept is applicable to nutrient–periphyton relationships. Literature values for seasonal means of biomass of periphyton, nutrient concentrations, and other stream characteristics were collected for almost 300 sampling periods from temperate streams. Data for benthic chlorophyll and nutrient concentrations from a subset of 620 stations in the United States National Stream Water-Quality Monitoring Networks were also analyzed. The greatest portion of variance in models for the mean and maximum biomass of benthic stream algae (about 40%) was explained by concentrations of total N and P. Breakpoint regression and a two-dimensional Kolmogorov–Smirnov statistical technique established significant breakpoints of about 30 µg total P·L –1 and 40 µg total N·L –1 , above which mean chlorophyll values were substantially higher. Ecoregion effects on nutrient–chlorophyll relationships were weak. Ecoregion effects were cross-correlated with anthropogenic effects such as percent urban and cropland area in the watershed and population density. Thus, caution is necessary to separate anthropogenic effects from natural variation at the ecoregion level.
Microbial diversity-productivity relationships in aquatic ecosystems
Thanks to recent advances in molecular biology, one's knowledge of microbial co-occurrence patterns, microbial biogeography and microbial biodiversity is expanding rapidly. This MiniReview explores microbial diversity-productivity relationships in the light of what is known from the general ecology literature. Analyses of microbial diversity-productivity relationships from 70 natural, experimental, and engineered aquatic ecosystems reveal patterns that are strikingly similar to those that have long been documented for communities of macroorganisms. Microbial ecology and the general science of ecology are thus continuing to converge.
Phytoplankton Species Richness Scales Consistently from Laboratory Microcosms to the World's Oceans
Species-area relationships have been observed for virtually all major groups of macroorganisms that have been studied to date but have not been explored for microscopic phytoplankton algae, which are the dominant producers in many freshwater and marine ecosystems. Our analyses of data from 142 different natural ponds, lakes, and oceans and 239 experimental ecosystems reveal a strong species-area relationship with an exponent that is invariant across ecosystems that span > 15 orders of magnitude in spatial extent. A striking result is that the species-area relationship derived from small-scale experimental studies correctly scales up to natural aquatic ecosystems. These results significantly broaden our knowledge of the effects of island size on biodiversity and also confirm the relevance of experimentally derived data to the analysis and understanding of larger-scale ecological patterns. In addition, they confirm that patterns in microbial diversity are strongly consistent with those that have been repeatedly reported in the literature for macroorganisms.