Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
135 result(s) for "Snoek Cees G M"
Sort by:
On Measuring and Controlling the Spectral Bias of the Deep Image Prior
The deep image prior showed that a randomly initialized network with a suitable architecture can be trained to solve inverse imaging problems by simply optimizing it’s parameters to reconstruct a single degraded image. However, it suffers from two practical limitations. First, it remains unclear how to control the prior beyond the choice of the network architecture. Second, training requires an oracle stopping criterion as during the optimization the performance degrades after reaching an optimum value. To address these challenges we introduce a frequency-band correspondence measure to characterize the spectral bias of the deep image prior, where low-frequency image signals are learned faster and better than high-frequency counterparts. Based on our observations, we propose techniques to prevent the eventual performance degradation and accelerate convergence. We introduce a Lipschitz-controlled convolution layer and a Gaussian-controlled upsampling layer as plug-in replacements for layers used in the deep architectures. The experiments show that with these changes the performance does not degrade during optimization, relieving us from the need for an oracle stopping criterion. We further outline a stopping criterion to avoid superfluous computation. Finally, we show that our approach obtains favorable results compared to current approaches across various denoising, deblocking, inpainting, super-resolution and detail enhancement tasks. Code is available at https://github.com/shizenglin/Measure-and-Control-Spectral-Bias.
Pixelated Semantic Colorization
While many image colorization algorithms have recently shown the capability of producing plausible color versions from gray-scale photographs, they still suffer from limited semantic understanding. To address this shortcoming, we propose to exploit pixelated object semantics to guide image colorization. The rationale is that human beings perceive and distinguish colors based on the semantic categories of objects. Starting from an autoregressive model, we generate image color distributions, from which diverse colored results are sampled. We propose two ways to incorporate object semantics into the colorization model: through a pixelated semantic embedding and a pixelated semantic generator. Specifically, the proposed network includes two branches. One branch learns what the object is, while the other branch learns the object colors. The network jointly optimizes a color embedding loss, a semantic segmentation loss and a color generation loss, in an end-to-end fashion. Experiments on Pascal VOC2012 and COCO-stuff reveal that our network, when trained with semantic segmentation labels, produces more realistic and finer results compared to the colorization state-of-the-art.
Object Priors for Classifying and Localizing Unseen Actions
This work strives for the classification and localization of human actions in videos, without the need for any labeled video training examples. Where existing work relies on transferring global attribute or object information from seen to unseen action videos, we seek to classify and spatio-temporally localize unseen actions in videos from image-based object information only. We propose three spatial object priors, which encode local person and object detectors along with their spatial relations. On top we introduce three semantic object priors, which extend semantic matching through word embeddings with three simple functions that tackle semantic ambiguity, object discrimination, and object naming. A video embedding combines the spatial and semantic object priors. It enables us to introduce a new video retrieval task that retrieves action tubes in video collections based on user-specified objects, spatial relations, and object size. Experimental evaluation on five action datasets shows the importance of spatial and semantic object priors for unseen actions. We find that persons and objects have preferred spatial relations that benefit unseen action localization, while using multiple languages and simple object filtering directly improves semantic matching, leading to state-of-the-art results for both unseen action classification and localization.
Pointly-Supervised Action Localization
This paper strives for spatio-temporal localization of human actions in videos. In the literature, the consensus is to achieve localization by training on bounding box annotations provided for each frame of each training video. As annotating boxes in video is expensive, cumbersome and error-prone, we propose to bypass box-supervision. Instead, we introduce action localization based on point-supervision. We start from unsupervised spatio-temporal proposals, which provide a set of candidate regions in videos. While normally used exclusively for inference, we show spatio-temporal proposals can also be leveraged during training when guided by a sparse set of point annotations. We introduce an overlap measure between points and spatio-temporal proposals and incorporate them all into a new objective of a multiple instance learning optimization. During inference, we introduce pseudo-points, visual cues from videos, that automatically guide the selection of spatio-temporal proposals. We outline five spatial and one temporal pseudo-point, as well as a measure to best leverage pseudo-points at test time. Experimental evaluation on three action localization datasets shows our pointly-supervised approach (1) is as effective as traditional box-supervision at a fraction of the annotation cost, (2) is robust to sparse and noisy point annotations, (3) benefits from pseudo-points during inference, and (4) outperforms recent weakly-supervised alternatives. This leads us to conclude that points provide a viable alternative to boxes for action localization.
Tubelets: Unsupervised Action Proposals from Spatiotemporal Super-Voxels
This paper considers the problem of localizing actions in videos as sequences of bounding boxes. The objective is to generate action proposals that are likely to include the action of interest, ideally achieving high recall with few proposals. Our contributions are threefold. First, inspired by selective search for object proposals, we introduce an approach to generate action proposals from spatiotemporal super-voxels in an unsupervised manner, we call them Tubelets . Second, along with the static features from individual frames our approach advantageously exploits motion. We introduce independent motion evidence as a feature to characterize how the action deviates from the background and explicitly incorporate such motion information in various stages of the proposal generation. Finally, we introduce spatiotemporal refinement of Tubelets, for more precise localization of actions, and pruning to keep the number of Tubelets limited. We demonstrate the suitability of our approach by extensive experiments for action proposal quality and action localization on three public datasets: UCF Sports, MSR-II and UCF101. For action proposal quality, our unsupervised proposals beat all other existing approaches on the three datasets. For action localization, we show top performance on both the trimmed videos of UCF Sports and UCF101 as well as the untrimmed videos of MSR-II.
Repetition Estimation
Visual repetition is ubiquitous in our world. It appears in human activity (sports, cooking), animal behavior (a bee’s waggle dance), natural phenomena (leaves in the wind) and in urban environments (flashing lights). Estimating visual repetition from realistic video is challenging as periodic motion is rarely perfectly static and stationary. To better deal with realistic video, we elevate the static and stationary assumptions often made by existing work. Our spatiotemporal filtering approach, established on the theory of periodic motion, effectively handles a wide variety of appearances and requires no learning. Starting from motion in 3D we derive three periodic motion types by decomposition of the motion field into its fundamental components. In addition, three temporal motion continuities emerge from the field’s temporal dynamics. For the 2D perception of 3D motion we consider the viewpoint relative to the motion; what follows are 18 cases of recurrent motion perception. To estimate repetition under all circumstances, our theory implies constructing a mixture of differential motion maps: \\[\\mathbf {F}\\], \\[{\\varvec{\\nabla }}\\mathbf {F}\\], \\[{\\varvec{\\nabla }}{\\varvec{\\cdot }} \\mathbf {F}\\] and \\[{\\varvec{\\nabla }}{\\varvec{\\times }} \\mathbf {F}\\]. We temporally convolve the motion maps with wavelet filters to estimate repetitive dynamics. Our method is able to spatially segment repetitive motion directly from the temporal filter responses densely computed over the motion maps. For experimental verification of our claims, we use our novel dataset for repetition estimation, better-reflecting reality with non-static and non-stationary repetitive motion. On the task of repetition counting, we obtain favorable results compared to a deep learning alternative.
Local Alignments for Fine-Grained Categorization
The aim of this paper is fine-grained categorization without human interaction. Different from prior work, which relies on detectors for specific object parts, we propose to localize distinctive details by roughly aligning the objects using just the overall shape. Then, one may proceed to the classification by examining the corresponding regions of the alignments. More specifically, the alignments are used to transfer part annotations from training images to unseen images (supervised alignment), or to blindly yet consistently segment the object in a number of regions (unsupervised alignment). We further argue that for the distinction of sub-classes, distribution-based features like color Fisher vectors are better suited for describing localized appearance of fine-grained categories than popular matching oriented shape-sensitive features, like HOG. They allow capturing the subtle local differences between subclasses, while at the same time being robust to misalignments between distinctive details. We evaluate the local alignments on the CUB-2011 and on the Stanford Dogs datasets, composed of 200 and 120, visually very hard to distinguish bird and dog species. In our experiments we study and show the benefit of the color Fisher vector parameterization, the influence of the alignment partitioning, and the significance of object segmentation on fine-grained categorization. We, furthermore, show that by using object detectors as voters to generate object confidence saliency maps, we arrive at fully unsupervised, yet highly accurate fine-grained categorization. The proposed local alignments set a new state-of-the-art on both the fine-grained birds and dogs datasets, even without any human intervention. What is more, the local alignments reveal what appearance details are most decisive per fine-grained object category.
Best practices for learning video concept detectors from social media examples
Learning video concept detectors from social media sources, such as Flickr images and YouTube videos, has the potential to address a wide variety of concept queries for video search. While the potential has been recognized by many, and progress on the topic has been impressive, we argue that key questions crucial to know how to learn effective video concept detectors from social media examples? remain open. As an initial attempt to answer these questions, we conduct an experimental study using a video search engine which is capable of learning concept detectors from social media examples, be it socially tagged videos or socially tagged images. Within the video search engine we investigate three strategies for positive example selection, three negative example selection strategies and three learning strategies. The performance is evaluated on the challenging TRECVID 2012 benchmark consisting of 600 h of Internet video. From the experiments we derive four best practices: (1) tagged images are a better source for learning video concepts than tagged videos, (2) selecting tag relevant positive training examples is always beneficial, (3) selecting relevant negative examples is advantageous and should be treated differently for video and image sources, and (4) learning concept detectors with selected relevant training data before learning is better then incorporating the relevance during the learning process. The best practices within our video search engine lead to state-of-the-art performance in the TRECVID 2013 benchmark for concept detection without manually provided annotations.
Focus for Free in Density-Based Counting
This work considers supervised learning to count from images and their corresponding point annotations. Where density-based counting methods typically use the point annotations only to create Gaussian-density maps, which act as the supervision signal, the starting point of this work is that point annotations have counting potential beyond density map generation. We introduce two methods that repurpose the available point annotations to enhance counting performance. The first is a counting-specific augmentation that leverages point annotations to simulate occluded objects in both input and density images to enhance the network’s robustness to occlusions. The second method, foreground distillation, generates foreground masks from the point annotations, from which we train an auxiliary network on images with blacked-out backgrounds. By doing so, it learns to extract foreground counting knowledge without interference from the background. These methods can be seamlessly integrated with existing counting advances and are adaptable to different loss functions. We demonstrate complementary effects of the approaches, allowing us to achieve robust counting results even in challenging scenarios such as background clutter, occlusion, and varying crowd densities. Our proposed approach achieves strong counting results on multiple datasets, including ShanghaiTech Part_A and Part_B, UCF_QNRF, JHU-Crowd++, and NWPU-Crowd. Code is available at https://github.com/shizenglin/Counting-with-Focus-for-Free.
Association Between Social Distancing Compliance and Public Place Crowding During the COVID-19 Pandemic: Cross-Sectional Observational Study Using Computer Vision to Analyze Surveillance Footage
Social distancing behavior has been a critical nonpharmaceutical measure for mitigating the COVID-19 pandemic. For this reason, there has been widespread interest in the factors determining social distancing violations, with a particular focus on individual-based factors. In this paper, we examine an alternative and less appreciated indicator of social distancing violations: the situational opportunity for maintaining interpersonal distance in crowded settings. This focus on situational opportunities is borrowed from criminology, where it offers an alternative to individual-based explanations of crime and rule violations. We extend this approach to the COVID-19 pandemic context, suggesting its relevance in understanding distancing compliance behavior. Our data comprise a large collection of video clips (n=56,429) from public places in Amsterdam, the Netherlands, captured by municipal surveillance cameras throughout the first year of the pandemic. We automatized the analysis of this footage using a computer vision algorithm designed for pedestrian detection and estimation of metric distances between individuals in the video still frames. This method allowed us to record social distancing violations of over half a million individuals (n=539,127) across more and less crowded street contexts. The data revealed a clear positive association between crowding and social distancing violations, evident both at the individual level and when aggregated per still frame. At the individual level, the analysis estimated that each additional 10 people present increased the likelihood of a distancing violation by 9 percentage points for a given pedestrian. At the aggregated level, there was an estimated increase of approximately 6 additional violations for every 10 additional individuals present, with a very large R² of 0.80. Additionally, a comparison with simulation data indicated that street spaces should, in principle, provide sufficient room for people to pass each other while maintaining a 1.5-meter distance. This suggests that pedestrians tend to gravitate toward others, even when ample space exists to maintain distance. The direct positive relationship between crowding and distancing violations suggests that potential transmission encounters can be identified by simply counting the number of people present in a location. Our findings thus provide a reliable and scalable proxy measure of distancing noncompliance that offers epidemiologists a tool to easily incorporate real-life behavior into predictive models of airborne contagious diseases. Furthermore, our results highlight the need for scholars and public health agencies to consider the situational factors influencing social distancing violations, especially those related to crowding in public settings.