Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
108 result(s) for "Soberón, Mario"
Sort by:
The Future of Bt Proteins: From Pore Formation and Insect Resistance to the Next Generation of Pest Control
The remarkable success of Bacillus thuringiensis [Bt] in pest control worldwide resides not only on the extraordinary potency of its pesticidal proteins, but also on their narrow insect specificity, their safety for humans, and biodegradability [...]
How to cope with insect resistance to Bt toxins?
Transgenic Bt crops producing insecticidal crystalline proteins from Bacillus thuringiensis, so-called Cry toxins, have proved useful in controlling insect pests. However, the future of Bt crops is threatened by the evolution of insect resistance. Understanding how Bt toxins work and how insects become resistant will provide the basis for taking measures to counter resistance. Here we review possible mechanisms of resistance and different strategies to cope with resistance, such as expression of several toxins with different modes of action in the same plant, modified Cry toxins active against resistant insects, and the potential use of Cyt toxins or a fragment of cadherin receptor. These approaches should provide the means to assure the successful use of Bt crops for an extended period of time.
The CRISPR-Cas systems were selectively inactivated during evolution of Bacillus cereus group for adaptation to diverse environments
CRISPR-Cas systems are considered as barriers to horizontal gene transfer (HGT). However, the influence of such systems on HGT within species is unclear. Also, little is known about the impact of CRISPR-Cas systems on bacterial evolution at the population level. Here, using Bacillus cereus sensu lato as model, we investigate the interplay between CRISPR-Cas systems and HGT at the population scale. We found that only a small fraction of the strains have CRISPR-Cas systems (13.9% of 1871), and most of such systems are defective based on their gene content analysis. Comparative genomic analysis revealed that the CRISPR-Cas systems are barriers to HGT within this group, since strains harboring active systems contain less mobile genetic elements (MGEs), have lower fraction of unique genes and also display limited environmental distributions than strains without active CRISPR-Cas systems. The introduction of a functional CRISPR-Cas system into a strain lacking the system resulted in reduced adaptability to various stresses and decreased pathogenicity of the transformant strain, indicating that B. cereus group strains could benefit from inactivating such systems. Our work provides a large-scale case to support that the CRISPR-Cas systems are barriers to HGT within species, and that in the B. cereus group the inactivation of CRISPR-Cas systems correlated with acquisition of MGEs that could result in better adaptation to diverse environments.
Engineering Modified Bt Toxins to Counter Insect Resistance
The evolution of insect resistance threatens the effectiveness of Bacillus thuringiensis (Bt) toxins that are widely used in sprays and transgenic crops. Resistance to Bt toxins in some insects is linked with mutations that disrupt a toxin-binding cadherin protein. We show that susceptibility to the Bt toxin Cry1Ab was reduced by cadherin gene silencing with RNA interference in Manduca sexta, confirming cadherin's role in Bt toxicity. Native Cry1A toxins required cadherin to form oligomers, but modified Cry1A toxins lacking one α-helix did not. The modified toxins killed cadherin-silenced M. sexta and Bt-resistant Pectinophora gossypiella that had cadherin deletion mutations. Our findings suggest that cadherin promotes Bt toxicity by facilitating toxin oligomerization and demonstrate that the modified Bt toxins may be useful against pests resistant to standard Bt toxins.
Identification of midgut membrane proteins from different instars of Helicoverpa armigera (Lepidoptera: Noctuidae) that bind to Cry1Ac toxin
Helicoverpa armigera is a polyphagous pest sensitive to Cry1Ac protein from Bacillus thuringiensis (Bt). The susceptibility of the different larval instars of H. armigera to Cry1Ac protoxin showed a significant 45-fold reduction in late instars compared to early instars. A possible hypothesis is that gut surface proteins that bind to Cry1Ac differ in both instars, although higher Cry toxin degradation in late instars could also explain the observed differences in susceptibility. Here we compared the Cry1Ac-binding proteins from second and fifth instars by pull-down assays and liquid chromatography coupled to mass spectrometry analysis (LC-MS/MS). The data show differential protein interaction patterns of Cry1Ac in the two instars analyzed. Alkaline phosphatase, and other membrane proteins, such as prohibitin and an anion selective channel protein were identified only in the second instar, suggesting that these proteins may be involved in the higher toxicity of Cry1Ac in early instars of H. armigera. Eleven Cry1Ac binindg proteins were identified exclusively in late instar larvae, like different proteases such as trypsin-like protease, azurocidin-like proteinase, and carboxypeptidase. Different aminopeptidase N isofroms were identified in both instar larvae. We compared the Cry1Ac protoxin degradation using midgut juice from late and early instars, showing that the midgut juice from late instars is more efficient to degrade Cry1Ac protoxin than that of early instars, suggesting that increased proteolytic activity on the toxin could also explain the low Cry1Ac toxicity in late instars.
Rapid spread of a densovirus in a major crop pest following wide-scale adoption of Bt-cotton in China
Bacillus thuringiensis (Bt) crops have been widely planted and the effects of Bt-crops on populations of the target and non-target insect pests have been well studied. However, the effects of Bt-crops exposure on microorganisms that interact with crop pests have not previously been quantified. Here, we use laboratory and field data to show that infection of Helicoverpa armigera with a densovirus (HaDV2) is associated with its enhanced growth and tolerance to Bt-cotton. Moreover, field monitoring showed a much higher incidence of cotton bollworm infection with HaDV2 in regions cultivated with Bt-cotton than in regions without it, with the rate of densovirus infection increasing with increasing use of Bt-cotton. RNA-seq suggested tolerance to both baculovirus and Cry1Ac were enhanced via the immune-related pathways. These findings suggest that exposure to Bt-crops has selected for beneficial interactions between the target pest and a mutualistic microorganism that enhances its performance on Bt-crops under field conditions.
Can microbial‐based insecticides replace chemical pesticides in agricultural production?
Extensive use of chemical insecticides to control insect pests in agriculture has improved yields and production of high‐quality food products. However, chemical insecticides have been shown to be harmful also to beneficial insects and many other organisms like vertebrates. Thus, there is a need to replace those chemical insecticides by other control methods in order to protect the environment. Insect pest pathogens, like bacteria, viruses or fungi, are interesting alternatives for production of microbial‐based insecticides to replace the use of chemical products in agriculture. Organic farming, which does not use chemical pesticides for pest control, relies on integrated pest management techniques and in the use of microbial‐based insecticides for pest control. Microbial‐based insecticides require precise formulation and extensive monitoring of insect pests, since they are highly specific for certain insect pests and in general are more effective for larval young instars. Here, we analyse the possibility of using microbial‐based insecticides to replace chemical pesticides in agricultural production.
The Cadherin Protein Is Not Involved in Susceptibility to Bacillus thuringiensis Cry1Ab or Cry1Fa Toxins in Spodoptera frugiperda
It is well known that insect larval midgut cadherin protein serves as a receptor of Bacillus thuringiensis (Bt) crystal Cry1Ac or Cry1Ab toxins, since structural mutations and downregulation of cad gene expression are linked with resistance to Cry1Ac toxin in several lepidopteran insects. However, the role of Spodoptera frugiperda cadherin protein (SfCad) in the mode of action of Bt toxins remains elusive. Here, we investigated whether SfCad is involved in susceptibility to Cry1Ab or Cry1Fa toxins. In vivo, knockout of the SfCad gene by CRISPR/Cas 9 did not increase tolerance to either of these toxins in S. frugiperda larvae. In vitro cytotoxicity assays demonstrated that cultured insect TnHi5 cells expressing GFP-tagged SfCad did not increase susceptibility to activated Cry1Ab or Cry1Fa toxins. In contrast, expression of another well recognized Cry1A receptor in this cell line, the ABCC2 transporter, increased the toxicity of both Cry1Ab and Cry1Fa toxins, suggesting that SfABCC2 functions as a receptor of these toxins. Finally, we showed that the toxin-binding region of SfCad did not bind to activated Cry1Ab, Cry1Ac, nor Cry1Fa. All these results support that SfCad is not involved in the mode of action of Cry1Ab or Cry1Fa toxins in S. frugiperda.
The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host
Host-pathogen interactions are central components of ecological networks where the MAPK signaling pathways act as central hubs of these complex interactions. We have previously shown that an insect hormone modulated MAPK signaling cascade participates as a general switch to trans -regulate differential expression of diverse midgut genes in the diamondback moth, Plutella xylostella (L.) to cope with the insecticidal action of Cry1Ac toxin, produced by the entomopathogenic bacterium Bacillus thuringiensis (Bt). The relationship between topology and functions of this four-tiered phosphorylation signaling cascade, however, is an uncharted territory. Here, we carried out a genome-wide characterization of all the MAPK orthologs in P . xylostella to define their phylogenetic relationships and to confirm their evolutionary conserved modules. Results from quantitative phosphoproteomic analyses, combined with functional validations studies using specific inhibitors and dsRNAs lead us to establish a MAPK “road map”, where p38 and ERK MAPK signaling pathways, in large part, mount a resistance response against Bt toxins through regulating the differential expression of multiple Cry toxin receptors and their non-receptor paralogs in P . xylostella midgut. These data not only advance our understanding of host-pathogen interactions in agricultural pests, but also inform the future development of biopesticides that could suppress Cry resistance phenotypes.