Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
57 result(s) for "Soldin, P."
Sort by:
Sex Differences in Pharmacokinetics and Pharmacodynamics
Significant differences that exist between the sexes affect the prevalence, incidence and severity of a broad range of diseases and conditions. Men and women also differ in their response to drug treatment. It is therefore essential to understand these reactions in order to appropriately conduct risk assessment and to design safe and effective treatments. Even from that modest perspective, how and when we use drugs can result in unwanted and unexpected outcomes. This review summarizes the sex-based differences that impact on pharmacokinetics, and includes a general comparison of clinical pharmacology as it applies to men, women and pregnant women. Sex-related or pregnancy-induced changes in drug absorption, distribution, metabolism and elimination, when significant, may guide changes in dosage regimen or therapeutic monitoring to increase its effectiveness or reduce potential toxicity. Given those parameters, and our knowledge of sex differences, we can derive essentially all factors necessary for therapeutic optimization. Since this is a rapidly evolving area, it is essential for the practitioner to review drug prescribing information and recent literature in order to fully understand the impact of these differences on clinical therapeutics.
Steroid Hormone Analysis by Tandem Mass Spectrometry
Background: New high-performance liquid chromatography/tandem mass spectrometry (LC-MS/MS) methods are among the most successful approaches to improve specificity problems inherent in many immunoassays. Content: We emphasize problems with immunoassays for the measurement of steroids and review the emerging role of LC-MS/MS in the measurement of clinically relevant steroids. The latest generation of tandem mass spectrometers has superior limits of quantification, permitting omission of previously employed derivatization steps. The measurement of steroid profiles in the diagnosis and treatment of congenital adrenal hyperplasia, adrenal insufficiency, chronic pelvic pain and prostatitis, oncology (breast cancer), and athletes has important new applications. Conclusions: LC-MS/MS now affords the specificity, imprecision, and limits of quantification necessary for the reliable measurement of steroids in human fluids, enhancing diagnostic capabilities, particularly when steroid profiles are available.
Sex Differences in Drug Disposition
Physiological, hormonal, and genetic differences between males and females affect the prevalence, incidence, and severity of diseases and responses to therapy. Understanding these differences is important for designing safe and effective treatments. This paper summarizes sex differences that impact drug disposition and includes a general comparison of clinical pharmacology as it applies to men and women.
Urinary phthalate metabolites in relation to maternal serum thyroid and sex hormone levels during pregnancy: a longitudinal analysis
Background Increasing scientific evidence suggests that exposure to phthalates during pregnancy may be associated with an elevated risk of adverse reproductive outcomes such as preterm birth. Maternal endocrine disruption across pregnancy may be one pathway mediating some of these relationships. We investigated whether urinary phthalate metabolites were associated with maternal serum thyroid (free thyroxine [FT4], free triiodothyronine [FT3], and thyroid-stimulating hormone [TSH]), and sex (estradiol, progesterone, and sex hormone-binding globulin [SHBG]) hormone levels at multiple time points during pregnancy. Methods Preliminary data (n = 106) were obtained from an ongoing prospective birth cohort in Northern Puerto Rico. We collected urine and serum sample at the first and third study visits that occurred at 18 +/- 2 and 26 +/- 2 weeks of gestation, respectively. To explore the longitudinal relationships between urinary phthalate metabolites and serum thyroid and sex hormone concentrations, we used linear mixed models (LMMs) adjusted for prepregnancy body mass index (BMI) and maternal age. An interaction term was added to each LMM to test whether the effect of urinary phthalate metabolites on serum thyroid and sex hormone levels varied by study visit. In cross-sectional analyses, we stratified BMI- and age-adjusted linear regression models by study visit. Results In adjusted LMMs, we observed significant inverse associations between mono-3-carboxypropyl phthalate (MCPP) and FT3 and between mono-ethyl phthalate (MEP) and progesterone. In cross-sectional analyses by study visit, we detected stronger and statistically significant inverse associations at the third study visit between FT3 and MCPP as well as mono-carboxyisooctyl phthalate (MCOP); also at the third study visit, significant inverse associations were observed between FT4 and metabolites of di-(2-ethylhexyl) phthalate (DEHP). The inverse association between MEP and progesterone was consistent across study visits. Conclusions In this group of pregnant women, urinary phthalate metabolites may be associated with altered maternal serum thyroid and sex hormone levels, and the magnitude of these effects may depend on the timing of exposure during gestation.
Hypothyroxinemia and Pregnancy
To evaluate the peer-reviewed literature on iodine deficiency and hypothyroxinemia in pregnancy. We review published studies on isolated hypothyroxinemia in pregnancy, methodology of free thyroxine (T4) assays, impact of iodine deficiency on free T4 levels, and status of ongoing prospective randomized trials of isolated hypothyroxinemia during pregnancy. Hypothyroxinemia during pregnancy is common. Studies have demonstrated the pivotal role exerted by maternal T4 on fetal brain development and the negative impact of hypothyroxinemia on neurobehavioral performance in offspring. Two intervention studies have demonstrated a positive effect on neurodevelopment in children of mothers promptly supplemented with iodine compared with the neurodevelopment in children of nonsupplemented mothers. Free T4 assays presently in clinical use have limitations. Preliminary results of the Controlled Antenatal Thyroid Study (CATS) are somewhat mixed, and the National Institutes of Health Maternal Fetal Medicine Thyrotropin Study (TSH Study) will be completed in 2015. Knowledge regarding the impact of isolated hypothyroxinemia has progressed, but major questions remain. An optimal diagnostic test for free T4 during pregnancy (accurate, inexpensive, and widely available) remains elusive. Trimester-specific normative data and normal ranges from different geographic regions do not exist. Data published to date are insufficient to recommend levothyroxine therapy in pregnant women with isolated hypothyroxinemia. Adequate iodine intake should be recommended before conception and early in pregnancy.
Correlations of Free Thyroid Hormones Measured by Tandem Mass Spectrometry and Immunoassay with Thyroid-Stimulating Hormone across 4 Patient Populations
Background: Accurate measurement of free thyroid hormones is important for managing thyroid disorders. Ultrafiltration liquid chromatography tandem mass spectrometry (LC-MS/MS) can reliably measure the concentrations of small molecules, including thyroid hormones. Our study was designed to compare free thyroid hormone measurements performed with immunoassay and LC-MS/MS. Methods: We studied the performance of LC-MS/MS in 4 different populations comprising pediatric patients, euthyroid adults, and healthy nonpregnant and pregnant women. The samples obtained from each population numbered 38, 200, 28, and 128, respectively. Free thyroxine, free triiodothyronine, and thyroid-stimulating hormone (TSH) concentrations were documented. Results: LC-MS/MS measurement of free thyroid hormones provided better correlation with log-transformed serum TSH in each population and also the populations combined. The correlations between free thyroxine measured by LC-MS/MS and log TSH in the pediatric outpatients and healthy adults were −0.90 and −0.77, respectively. The correlations for immunoassay were −0.82 and −0.48. The correlations between free triiodothyronine measured by LC-MS/MS and TSH for both pediatric and healthy adult populations were −0.72 and −0.68, respectively. Conclusions: Free thyroid hormone concentrations measured by LC-MS/MS correlate to a greater degree with log TSH values compared to concentrations measured by immunoassay. This correlation was maintained across the patient populations we studied and may reflect the accuracy and specificity of LC-MS/MS. The superior ability of LC-MS/MS to enable documentation of the well-known thyroid hormone–TSH relationship supports the use of this measurement technique in a variety of clinical situations.
Thyroid Hormones and Methylmercury Toxicity
Thyroid hormones are essential for cellular metabolism, growth, and development. In particular, an adequate supply of thyroid hormones is critical for fetal neurodevelopment. Thyroid hormone tissue activation and inactivation in brain, liver, and other tissues is controlled by the deiodinases through the removal of iodine atoms. Selenium, an essential element critical for deiodinase activity, is sensitive to mercury and, therefore, when its availability is reduced, brain development might be altered. This review addresses the possibility that high exposures to the organometal, methylmercury (MeHg), may perturb neurodevelopmental processes by selectively affecting thyroid hormone homeostasis and function.
Management of Thyroid Peroxidase Antibody Euthyroid Women in Pregnancy: Comparison of the American Thyroid Association and the Endocrine Society Guidelines
The presence of thyroid autoantibodies is relatively high in women of childbearing age. There is evidence that positive thyroperoxidase antibody even in euthyroid women may increase the risk of spontaneous and recurrent pregnancy loss and preterm delivery. However, the evidence is not enough to justify recommendation on the screening of pregnant women for thyroid autoantibodies or LT4 supplementation for reducing maternal or fetal complications. In this paper we reviewed the related evidence and compared the new guidelines of the American Thyroid Association and Endocrine Society with respect to the screening and management of positive thyroperoxidase antibody in euthyroid pregnant women. As there was no major contradiction or disagreement between the two guidelines, either one of two guidelines may be used by clinicians for the appropriate management of thyroid autoimmunity during pregnancy.
The Use of TSH in Determining Thyroid Disease: How Does It Impact the Practice of Medicine in Pregnancy?
During the last four decades, there have been considerable advances in the efficacy and precision of serum thyroid function testing. The development of the third generation assays for the measurement of serum thyroid stimulating hormone (TSH, thyrotropin) and the log-linear relationship with free thyroxine (T4) established TSH as the hallmark of thyroid function testing. While it is widely accepted that TSH outside of the normal range is consistent with thyroid dysfunction, a vast multitude of additional factors must be considered before an accurate clinical diagnosis can be made. This is especially important during pregnancy, when the thyroid is under considerable additional pregnancy-related demands requiring significant maternal physiological changes. This paper examines serum TSH measurement in pregnancy and some associated potential confounding factors.
CYP3A422 and CYP3A Combined Genotypes Both Correlate With Tacrolimus Disposition in Pediatric Heart Transplant Recipients
Tacrolimus metabolism depends on CYP3A4 and CYP3A5. We aimed to determine the relationship between the CYP3A4*22 polymorphism and combined CYP3A genotypes with tacrolimus disposition in pediatric heart transplant recipients. Sixty pediatric heart transplant recipients were included. Tacrolimus doses and trough concentrations were collected in the first 14 days post-transplantation. CYP3A phenotypes were defined as extensive (CYP3A5*1 + CYP3A4*1/*1 carriers), intermediate (CYP3A5*3/*3 + CYP3A4*1/*1 carriers) or poor (CYP3A5*3/*3 + CYP3A4*22 carriers) metabolizers. CYP3A4*22 carriers needed 30% less tacrolimus (p = 0.016) to reach similar target concentrations compared with CYP3A4*1/*1 (n = 56) carriers. Poor CYP3A metabolizers required 17% (p = 0.023) less tacrolimus than intermediate and 48% less (p < 0.0001) than extensive metabolizers. Poor metabolizers showed 18% higher dose-adjusted concentrations than intermediate (p = 0.35) and 193% higher than extensive metabolizers (p < 0.0001). Analysis of CYP3A4*22, either alone or in combination with CYP3A5*3, may help towards individualization of tacrolimus therapy in pediatric heart transplant patients.