Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,941
result(s) for
"Soliman, A"
Sort by:
Dietary Fiber, Atherosclerosis, and Cardiovascular Disease
2019
Observational studies have shown that dietary fiber intake is associated with decreased risk of cardiovascular disease. Dietary fiber is a non-digestible form of carbohydrates, due to the lack of the digestive enzyme in humans required to digest fiber. Dietary fibers and lignin are intrinsic to plants and are classified according to their water solubility properties as either soluble or insoluble fibers. Water-soluble fibers include pectin, gums, mucilage, fructans, and some resistant starches. They are present in some fruits, vegetables, oats, and barley. Soluble fibers have been shown to lower blood cholesterol by several mechanisms. On the other hand, water-insoluble fibers mainly include lignin, cellulose, and hemicellulose; whole-grain foods, bran, nuts, and seeds are rich in these fibers. Water-insoluble fibers have rapid gastric emptying, and as such may decrease the intestinal transit time and increase fecal bulk, thus promoting digestive regularity. In addition to dietary fiber, isolated and extracted fibers are known as functional fiber and have been shown to induce beneficial health effects when added to food during processing. The recommended daily allowances (RDAs) for total fiber intake for men and women aged 19–50 are 38 gram/day and 25 gram/day, respectively. It is worth noting that the RDA recommendations are for healthy people and do not apply to individuals with some chronic diseases. Studies have shown that most Americans do not consume the recommended intake of fiber. This review will summarize the current knowledge regarding dietary fiber, sources of food containing fiber, atherosclerosis, and heart disease risk reduction.
Journal Article
Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease
2018
Cardiovascular disease (CVD) is the leading cause of death in the United States. For years, dietary cholesterol was implicated in increasing blood cholesterol levels leading to the elevated risk of CVD. To date, extensive research did not show evidence to support a role of dietary cholesterol in the development of CVD. As a result, the 2015–2020 Dietary Guidelines for Americans removed the recommendations of restricting dietary cholesterol to 300 mg/day. This review summarizes the current literature regarding dietary cholesterol intake and CVD. It is worth noting that most foods that are rich in cholesterol are also high in saturated fatty acids and thus may increase the risk of CVD due to the saturated fatty acid content. The exceptions are eggs and shrimp. Considering that eggs are affordable and nutrient-dense food items, containing high-quality protein with minimal saturated fatty acids (1.56 gm/egg) and are rich in several micronutrients including vitamins and minerals, it would be worthwhile to include eggs in moderation as a part of a healthy eating pattern. This recommendation is particularly relevant when individual’s intakes of nutrients are suboptimal, or with limited income and food access, and to help ensure dietary intake of sufficient nutrients in growing children and older adults.
Journal Article
Development of hydrogel based on Carboxymethyl cellulose/poly(4-vinylpyridine) for controlled releasing of fertilizers
2022
A novel Carboxymethyl cellulose (CMC) and poly (4-vinylpyridine) (P4VP) hydrogel system is synthesized with different ratios, in the presence of cross-linker N, N,- methylene bis-acrylamide (MBA). The hydrogel is characterized via FTIR spectroscopy, thermal gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscope (SEM). The FTIR results showed a strong interaction between both CMC, P4VP and the loaded fertilizer. The water uptake of the hydrogel was evaluated by swelling tests under variations in pH, biodegradability was investigated in soil to simulate real-world conditions. To determine the best release behavior of urea and calcium nitrate from the hydrogel, fertilizers were loaded with different ratios onto the hydrogel during its formation. Fertilizers release was followed by Atomic absorption spectroscopy to study the release of calcium nitrate and urea. Release kinetic parameters were obtained based on different mathematical models as Zero order, First order, Korsmeyer–Peppas and Higuchi models. The suitable proportionality between the mathematical models used and the fertilizers release was determined based on the correlation coefficients (R2). According to Zero order model urea release showed independent concentration. Based on Korsmeyer-Pappas and Higuchi models with high n value and R2 equals to 0.97. Compared to urea, Ca2+, Zero order and Higuchi have been ignored due to their poor correlation coefficients values as proportion with Ca2+ fertilizer release.
Journal Article
Boosting the thermal management performance of a PCM-based module using novel metallic pin fin geometries: Numerical study
2023
Satellite avionics and electronic components are getting compact and have high power density. Thermal management systems are essential for their optimal operational performance and survival. Thermal management systems keep the electronic components within a safe temperature range. Phase change materials (PCMs) have high thermal capacity, so they are promising for thermal control applications. This work adopted a PCM-integrated thermal control device (TCD) to manage the small satellite subsystems under zero gravity conditions thermally. The TCD's outer dimensions were selected upon a typical small satellite subsystem. The PCM adopted was the organic PCM of RT 35. Pin fins with different geometries were adopted to boost the lower thermal conductivity of the PCM. Six-pin fins geometries were used. First, the conventional geometries were square, circular, and triangular. Second, the novel geometries were cross-shaped, I-shaped, and V-shaped fins. The fins were designed at two-volume fractions of 20% and 50%. The electronic subsystem was assumed to be \"ON\" for 10 min releasing 20 W of heat, and \"OFF\" for 80 min. The findings show a remarkable decrease in the TCD's base plate temperature by 5.7 ℃ as the fins' number changed from 15 to 80 for square fins. The results also show that the novel cross-shaped, I-shaped, and V-shaped pin fins could significantly enhance thermal performance. The cross-shaped, I-shaped, and V-shaped reported a decrease in the temperature by about 1.6%, 2.6%, and 6.6%, respectively, relative to the circular fin geometry. V-shaped fins could also increase the PCM melt fraction by 32.3%.
Journal Article
Telocytes are major constituents of the angiogenic apparatus
2021
The current study investigated role of telocytes (TCs) in angiogenesis during embryonic development of quail using immunohistochemistry (IHC), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The angiogenic apparatus consisted of TCs, endothelial cells, and macrophages. TCs were identified morphologically by their telopodes and podoms using TEM and SEM and immunohistochemically using CD34, and vascular endothelial growth factor (VEGF). TCs also expressed CD68. TCs formed a three-dimensional network and established direct contact with blood vessels, sprouting endothelial cells, and active macrophages, while exerting their effect through paracrine signaling. VEGF was also expressed by endothelial cells and macrophages. Matrix metalloproteinase–9 (MMP-9) was expressed by TCs, endothelial cells, and macrophages. In conclusion, the expression of VEGF by TCs, endothelial cells, and macrophages is required for the proliferation and migration of endothelial cells and vascular growth. The expression of MMP-9 by TCs, endothelial cells, and macrophages is essential for the degradation of extracellular matrix (ECM) components during neoangiogenesis. Macrophages may facilitate phagocytosis and elimination of the degraded ECM components.
Journal Article
Ki-67 as a prognostic marker according to breast cancer molecular subtype
2016
Objective: Ki-67 plays an important function in cell division, but its exact role is still unknown. Moreover, few works regarding its overall function were published. The present study evaluated the clinical significance of Ki-67 index as a prognostic marker and predictor of recurrence in different molecular subtypes of breast cancer. The relationship of Ki-67 index with different clinicopathological factors was also analyzed.Methods: Ki-67 index was measured in 107 cases of primary breast cancer from 2010-2012. These patients were evaluated for estrogen receptor, progesterone receptor, and HER2. Ki-67 was divided according to percentage levels: 〈15% and 〉15%. Followup ranged from 32 months up to 6 years.Results: Approximately 44, 23, 15, and 25 cases were grouped as luminal A, luminal B, HER2 subtype, and triple-negative(TN),respectively. No luminal A patients showed Ki-67 level higher than 15%, and their recurrence was 20%. In luminal B group, Ki-67 level higher than 15% was observed in 69% of patients, and recurrence was 39%. In HER2 subtype, Ki-67 was higher than 15% in34% of cases, and recurrence was 40%. In triple-negative cases, Ki-67 was higher than 15% in 60% of cases, and recurrence was detected in 32% of patients. Patients with Ki-67 less than 15% displayed better overall survival than those with Ki-67 higher than15%(P = 0.01). Patients with Ki-67 higher than 15% exhibited higher incidence of metastasis and recurrence than those with Ki-67 less than 15%(P = 0.000).Conclusions: Ki-67 may be considered as a valuable biomarker in breast cancer patients.
Journal Article
Immunohistochemical properties of embryonic telocytes in a myogenic microenvironment
2024
Telocytes are a unique interstitial cell type that functions in adulthood and embryogenesis. They have characteristic immunohistochemical phenotypes while acquiring different immunohistochemical properties related to the organ microenvironment. The present study aims to investigate the immunohistochemical features of embryonic telocytes during myogenesis and describe their morphology using light microscopy and TEM. Telocytes represent a major cellular constituent in the interstitial elements. They had distinguished telopodes and podoms and formed a 3D interstitial network in the developing muscles. They formed heterocellular contact with myoblasts and nascent myotubes. Telocytes also had distinctive secretory activity. Telocytes identified by CD34. They also express CD68 and MMP-9 to facilitate the development of new tissues. Expression of CD21 by telocytes may reveal their function in immune defense. They also express VEGF, which regulates angiogenesis. In conclusion, the distribution and immunological properties of telocytes in the myogenic tissue indicate that telocytes provide biological and structural support in the development of the myogenic tissue architecture and organization.
Journal Article
Unveiling the role of perineural telocytes in mechanosensation, structural insights into their association with herbst and ruffini corpuscles in the quail beak
2025
This study investigates the structural organization of telocytes (TCs) in the quail beak, focusing on their association with mechanoreceptors like Herbst and Ruffini corpuscles. By exploring these features, the study aim to expand the understanding of TCs’ role in mechanosensation and sensory modulation. Paraffin sections stained with Hematoxylin and Eosin revealed TCs surrounding both Herbst and Ruffini corpuscles, as well as nerve fibers. Similar findings observed using Mallory Trichrome staining, which highlighted TCs around these sensory structures. Methylene Blue staining further confirmed the presence of TCs in these areas. Semi-thin sections stained with Toluidine Blue also showed TCs encircling the sensory corpuscles, consistent with other techniques. Transmission electron microscopy (TEM) provided detailed ultrastructural insights, revealing TCs near the Herbst corpuscle, with a prominent nucleus, telopodes, and podoms, while TCs around the Ruffini corpuscle exhibited similar features. These findings have clinical relevance, as TCs increasingly recognized for their role in nerve repair and regeneration. Their involvement in sensory modulation suggests potential therapeutic applications for conditions involving nerve injury or sensory dysfunction. Immunohistochemical analysis of quail beak. Using CD34, VEGF, CD21, and CD68 IHC, TCs observed to form a three-dimensional (3D) network around the nerve. The clinical relevance of these findings was significant, as TCs increasingly recognized for their role in nerve repair and regeneration. Their involvement in sensory modulation suggests potential therapeutic avenues for conditions related to nerve injury or sensory dysfunction. Ongoing research into TCs will further deepen our understanding of their functions in sensory systems and may pave the way for novel treatments for sensory disorders.
Journal Article
Semi-active suspension systems from research to mass-market – A review
2021
It is well documented that active suspension systems offer substantial benefits in ride comfort, handling control over traditional passive systems. However, restrictive features such as the power required and costs make an active system impractical. To solve those problems, semi-active suspension systems have been developed. This paper aims at providing a review of the present state-of-the-art in the semi-active suspension control field in terms of vehicle ride comfort and road-holding performance evaluation. Strengths and weaknesses of the semi-active suspension systems are identified and their relative performance capabilities and equipment requirements are discussed. Furthermore, examples of the current mass market implementation for semi-active suspension systems for road vehicle are discussed.
Journal Article
Immunohistochemical-properties of the dermal embryonic telocytes
2024
The current investigation aims to study the embryonic dermis formed in the early stages of development and identify the initial interstitial components of the dermis that serve as biological and structural scaffolds for the development of the dermal tissue. To investigate the dermal structure, the current study used morphological and immunological techniques. TCs identified by TEM. They had a cell body and unique podomeres and podoms. They formed a 3D network spread throughout the dermis. Homocellular contact established between them, as well as heterocellular contacts with other cells. Immunohistochemical techniques using specific markers for TCss CD34, CD117, and VEGF confirmed TC identification. TCs represent the major interstitial component in the dermal tissue. They established a 3D network, enclosing other cells and structures. Expression of VEGF by TC promotes angiogenesis. TCs establish cellular contact with sprouting endothelial cells. At the site of cell junction with TCs, cytoskeletal filaments identified and observed to form the pseudopodium core that projects from endothelial cells. TCs had proteolytic properties that expressed MMP-9, CD68, and CD21. Proteolytic activity aids in the removal of components of the extracellular matrix and the phagocytosis of degraded remnants to create spaces to facilitate the development of new dermal structures. In conclusion, TCs organized the scaffold for the development of future dermal structures, including fibrous components and skin appendages. Studying dermal TCs would be interested in the possibility of developing therapeutic strategies for treating different skin disorders and diseases.
Journal Article