Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Sollars, Cristina"
Sort by:
Advantage of rare HLA supertype in HIV disease progression
The highly polymorphic human leukocyte antigen (HLA) class I molecules help to determine the specificity and repertoire of the immune response. The great diversity of these antigen-binding molecules confers differential advantages in responding to pathogens, but presents a major obstacle to distinguishing HLA allele–specific effects. HLA class I supertypes provide a functional classification for the many different HLA alleles that overlap in their peptide-binding specificities. We analyzed the association of these discrete HLA supertypes with HIV disease progression rates in a population of HIV-infected men. We found that HLA supertypes alone and in combination conferred a strong differential advantage in responding to HIV infection, independent of the contribution of single HLA alleles that associate with progression of the disease. The correlation of the frequency of the HLA supertypes with viral load suggests that HIV adapts to the most frequent alleles in the population, providing a selective advantage for those individuals who express rare alleles.
High-throughput killer cell immunoglobulin-like receptor genotyping by MALDI-TOF mass spectrometry with discovery of novel alleles
The killer cell immunoglobulin-like receptors (KIR) interact with major histocompatibility complex (MHC) class I ligands to regulate the functions of natural killer cells and T cells. Like human leukocyte antigens class I, human KIR are highly variable and correlated with infection, autoimmunity, pregnancy syndromes, and transplantation outcome. Limiting the scope of KIR analysis is the low resolution, sensitivity, and speed of the established methods of KIR typing. In this study, we describe a first-generation single nucleotide polymorphism (SNP)-based method for typing the 17 human KIR genes and pseudogenes that uses analysis by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. It is a high-throughput method that requires minute amounts of genomic DNA for discrimination of KIR genes with some allelic resolution. A study of 233 individuals shows that the results obtained by the SNP-based KIR/MALDI-TOF method are consistent with those obtained with the established sequence-specific oligonucleotide probe or sequence-specific polymerase chain reaction methods. The added sensitivity of the KIR/MALDI-TOF method allowed putative novel alleles of the KIR2DL1, KIR3DL1, KIR2DS5, and KIR2DL5 genes to be identified. Sequencing the KIR2DL5 variant proved it was a newly discovered allele, one that appears associated with Hispanic and Native American populations. This KIR/MALDI-TOF method of KIR typing should facilitate population and disease-association studies that improve knowledge of the immunological functions of KIR-MHC class I interactions.
Cloning of Prodynorphin cDNAs from the Brain of Australian and African Lungfish: Implications for the Evolution of the Prodynorphin Gene
In mammals the opioids Met-enkephalin and Leu-enkephalin are derived from a common precursor, proenkephalin, and as a result these neuropeptides are co-localized in enkephalinergic neurons. The mammalian scheme for enkephalinergic networks is not universal for all classes of sarcopterygian vertebrates. In an earlier study, distinct Met- and Leu-enkephalin-positive neurons were detected in the central nervous system (CNS) of the African lungfish, Protopterus annectens. More recently, characterization of proenkephalin cDNAs separately cloned from the CNS of P. annectens and the Australian lungfish, Neoceratodus forsteri, revealed that the proenkephalin gene in these species encodes only Met-enkephalin-related opioids. In the current study a full-length prodynorphin cDNA (accession No. AY 445637) was cloned and sequenced from the CNS of N. forsteri. In addition to encoding α-neoendorphin, dynorphin A and dynorphin B sequences unique to the lungfish, two Leu-enkephalin sequences, flanked by paired basic amino acid proteolytic cleavage sites, were detected in this precursor. The partial sequence of a P. annectens prodynorphin cDNA (accession No. AY445638) also encoded a Leu-enkephalin sequence and a novel YGGFF sequence. The presence of the Leu-enkephalin sequence in the lungfish prodynorphin precursors would explain the origin of the distinct Leu-enkephalin-positive neurons found in the African lungfish CNS. The realization that Met-enkephalin and Leu-enkephalin can be derived from distinct opioid-coding precursor genes calls into question the interpretation of comparative immunohistochemical studies that have mapped ‘enkephalinergic’ networks in non-mammalian vertebrates.
In the African Lungfish Met-Enkephalin and Leu-Enkephalin Are Derived from Separate Genes: Cloning of a Proenkephalin cDNA
A full-length proenkephalin cDNA (accession number: AF232670) was cloned from an African lungfish (Protopterus annectens) brain cDNA library. The 1,351-bp African lungfish proenkephalin contains an open reading frame that codes 266 amino acids and a stop codon. Within the sequence of lungfish proenkephalin there are 5 pentapeptide opioid sequences (all YGGFM), 1 octapeptide opioid sequence (YGGFMRSL) and 1 heptapeptide opioid sequence (YGGFMGY). A Leu-enkephalin sequence was conspicuously absent in lungfish proenkephalin. These results, coupled with observations on the organization of amphibian proenkephalin and mammalian proenkephalin, indicate that among the Sarcopterygii (lobed finned fish and tetrapods), the appearance of a Leu-enkephalin sequence in proenkephalin may have evolved in either the ancestral amniotes or the ancestral mammals, but not earlier in sarcopterygian evolution. Furthermore, the detection of neurons in the lungfish CNS that are only immunopositive for Met-enkephalin, coupled with earlier anatomical studies on the presence of neurons in the lungfish CNS that are only immunopositive for Leu-enkephalin, indicates that a Leu-enkephalin-coding opioid gene must be present in the CNS of the lungfish. This gene may be the lungfish form of prodynorphin. Given the phylogenetic position of the lungfish in vertebrate evolution, the putative Leu-enkephalin-coding gene must have evolved in the ancestral sarcopterygian vertebrates, or in the ancestral gnathostomes. The apparent slow rate of lungfish evolution makes these organisms interesting models for investigating the evolution of the opioid/orphanin gene family.
Cloning of Proopiomelanocortin from the Brain of the African Lungfish, Protopterus annectens, and the Brain of the Western Spadefoot Toad, Spea multiplicatus
A degenerate primer, specific for the opioid core sequence YGGFM, was used to clone and sequence proopiomelanocortin (POMC) cDNAs from the brain of the African lungfish, Protopterus annectens, and from the brain of the western spadefoot toad, Spea multiplicatus. In addition, the opioid-specific primer was used to clone and sequence a 3′RACE product corresponding to a portion of the open reading frame of S. multiplicatus proenkephalin. For both species, cDNA was made from a single brain and a degenerate opioid-specific primer provided a reliable probe for detecting opioid-related cDNAs. The African lungfish POMC cDNA was 1,168 nucleotides in length, and contained regions that are similar to tetrapod POMCs and fish POMCs. The African lungfish POMC encodes a tetrapod-like γ-MSH sequence that is flanked by sets of paired basic amino acid proteolytic cleavage sites. The γ-MSH region in ray-finned fish POMCs either has degenerate cleavage sites or is totally absent in some species. However, the African lungfish γ-MSH sequence does contain a deletion which has not been observed in tetrapod γ-MSH sequences. The β-endorphin region of lungfish POMC has the di-amino acid sequence tryptophan-aspartic acid in the N-terminal region and an additional glutamic acid residue in the C-terminal region of β-endorphin – features found in fish β-endorphin, but not tetrapod β-endorphins. The western spadefoot toad POMC was 1,186 nucleotides in length, and exhibited an organizational scheme typical for tetrapod POMCs. However, the toad POMC did lack a paired basic amino acid proteolytic cleavage site N-terminal to the β-MSH sequence. Thus, like rat POMC, it is doubtful that β-MSH is an end product in either the toad brain or intermediate pituitary. At the amino acid level, the toad POMC had 76% sequence identity with Xenopus laevis POMC and 68% sequence identity with Rana ribidunda POMC. The use of these POMC sequences to assess phylogenetic relationships within anuran amphibians will be discussed. With respect to the fragment of S. multiplicatus proenkephalin cDNA, two metenkephalin sequences and the metenkephalin-RF sequence were found encoded in this fragment. As seen for X. laevis and R. ridibunda proenkephalin, a leuenkephalin sequence was not detected in the C-terminal region of the S. multiplicatus proenkephalin. The absence of a leuenkephalin sequence may be a common feature of anuran amphibian proenkephalins.
Cloning of proopiomelanocortin from the brain of the African lungfish, protopterus annectens, and the rain of the Western spadefoot toad, Spea multiplicatus
A degenerate primer, specific for the opioid core sequence YGGFM, was used to clone and sequence proopiomelanocortin (POMC) cDNAs from the brain of the African lungfish, Protopterus annectens, and from the brain of the western spadefoot toad, Spea multiplicatus. In addition, the opioid-specific primer was used to clone and sequence a 3'RACE product corresponding to a portion of the open reading frame of S. multiplicatus proenkephalin. For both species, cDNA was made from a single brain and a degenerate opioid-specific primer provided a reliable probe for detecting opioid-related cDNAs. The African lungfish POMC cDNA was 1,168 nucleotides in length, and contained regions that are similar to tetrapod POMCs and fish POMCs. The African lungfish POMC encodes a tetrapod-like gamma-MSH sequence that is flanked by sets of paired basic amino acid proteolytic cleavage sites. The gamma-MSH region in ray-finned fish POMCs either has degenerate cleavage sites or is totally absent in some species. However, the African lungfish gamma-MSH sequence does contain a deletion which has not been observed in tetrapod gamma-MSH sequences. The beta-endorphin region of lungfish POMC has the di-amino acid sequence tryptophan-aspartic acid in the N-terminal region and an additional glutamic acid residue in the C-terminal region of beta-endorphin - features found in fish beta-endorphin, but not tetrapod beta-endorphins. The western spadefoot toad POMC was 1,186 nucleotides in length, and exhibited an organizational scheme typical for tetrapod POMCs. However, the toad POMC did lack a paired basic amino acid proteolytic cleavage site N-terminal to the beta-MSH sequence. Thus, like rat POMC, it is doubtful that beta-MSH is an end product in either the toad brain or intermediate pituitary. At the amino acid level, the toad POMC had 76% sequence identity with Xenopus laevis POMC and 68% sequence identity with Rana ribidunda POMC. The use of these POMC sequences to assess phylogenetic relationships within anuran amphibians will be discussed. With respect to the fragment of S. multiplicatus proenkephalin cDNA, two metenkephalin sequences and the metenkephalin-RF sequence were found encoded in this fragment. As seen for X. laevis and R. ridibunda proenkephalin, a leuenkephalin sequence was not detected in the C-terminal region of the S. multiplicatus proenkephalin. The absence of a leuenkephalin sequence may be a common feature of anuran amphibian proenkephalins.