Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
104 result(s) for "Soloviev, Mikhail"
Sort by:
Insulin-Like Growth Factor-1 (IGF-1) and Its Monitoring in Medical Diagnostic and in Sports
Insulin-like growth factor-1 (IGF-1) is the principal mediator of growth hormone (GH), plays a crucial role in promoting cell growth and differentiation in childhood and continues to have an anabolic effect in adults. IGF-1 is part of a wide network of growth factors, receptors and binding proteins involved in mediating cellular proliferation, differentiation and apoptosis. Bioavailability of IGF-1 is affected by insulin-like growth factor binding proteins (IGFBPs) which bind IGF-1 in circulation with an affinity equal to or greater than that of the IGF-1 receptor (IGF-1R). The six IGFBPs serve as carrier proteins and bind approximately 98% of all circulating IGF-1. Other proteins known to bind IGF-1 include ten IGFBP-related proteins (IGFBP-rPs), albeit with lower affinities than the IGFBPs. IGF-1 expression levels vary in a number of clinical conditions suggesting it has the potential to provide crucial information as to the state of an individual’s health. IGF-1 is also a popular doping agent in sport and has featured in many high-profile doping cases in recent years. However, the existence of IGFBPs significantly reduces the levels of immunoreactive IGF-1 in samples, requiring multiple pre-treatment steps that reduce reproducibility and complicates interpretation of IGF-1 assay results. Here we provide an overview of the IGF network of growth factors, their receptors and the entirety of the extended family of IGFBPs, IGFBP-rPs, E peptides as well as recombinant IGF-1 and their derivatives. We also discuss issues related to the detection and quantification of bioavailable IGF-1.
Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range
Reductions in body size are increasingly being identified as a response to climate warming. Here we present evidence for a case of such body shrinkage, potentially due to malnutrition in early life. We show that an avian long-distance migrant (red knot, Calidris canutus canutus), which is experiencing globally unrivaled warming rates at its high-Arctic breeding grounds, produces smaller offspring with shorter bills during summers with early snowmelt. This has consequences half a world away at their tropical wintering grounds, where shorter-billed individuals have reduced survival rates. This is associated with these molluscivores eating fewer deeply buried bivalve prey and more shallowly buried seagrass rhizomes. We suggest that seasonal migrants can experience reduced fitness at one end of their range as a result of a changing climate at the other end.
Copines, a Family of Calcium Sensor Proteins and Their Role in Brain Function
The Copines are a family of evolutionary conserved calcium-binding proteins found in most eukaryotic organisms from protists to humans. They share a unique architecture and contain tandem C2 domains and a Von Willebrand factor type A (VWA) domain. C2 domains in Copines bind calcium, phospholipids, and other proteins and mediate the transient association of these proteins with biological membranes at elevated calcium levels. The VWA domain also binds calcium and is involved in protein–protein interactions. Here, we provide a comprehensive review of the sequences, structures, expression, targeting, and function of the entire family of known Copine proteins (Copine 1–9 in mammals) with a particular emphasis on their functional roles in the mammalian brain. Neuronal Copines are implicated in a wide array of processes from cell differentiation to synaptic transmission and plasticity and are also linked to several pathological conditions from cancers to brain diseases. This review provides the most up-to-date insights into the structure and function of Copines, with an emphasis on their role in brain function.
SNARE Modulators and SNARE Mimetic Peptides
The soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins play a central role in most forms of intracellular membrane trafficking, a key process that allows for membrane and biocargo shuffling between multiple compartments within the cell and extracellular environment. The structural organization of SNARE proteins is relatively simple, with several intrinsically disordered and folded elements (e.g., SNARE motif, N-terminal domain, transmembrane region) that interact with other SNAREs, SNARE-regulating proteins and biological membranes. In this review, we discuss recent advances in the development of functional peptides that can modify SNARE-binding interfaces and modulate SNARE function. The ability of the relatively short SNARE motif to assemble spontaneously into stable coiled coil tetrahelical bundles has inspired the development of reduced SNARE-mimetic systems that use peptides for biological membrane fusion and for making large supramolecular protein complexes. We evaluate two such systems, based on peptide-nucleic acids (PNAs) and coiled coil peptides. We also review how the self-assembly of SNARE motifs can be exploited to drive on-demand assembly of complex re-engineered polypeptides.
Status and trends of tundra birds across the circumpolar Arctic
Tundra-breeding birds face diverse conservation challenges, from accelerated rates of Arctic climate change to threats associated with highly migratory life histories. Here we summarise the status and trends of Arctic terrestrial birds (88 species, 228 subspecies or distinct flyway populations) across guilds/regions, derived from published sources, raw data or, in rare cases, expert opinion. We report long-term trends in vital rates (survival, reproduction) for the handful of species and regions for which these are available. Over half of all circumpolar Arctic wader taxa are declining (51% of 91 taxa with known trends) and almost half of all waterfowl are increasing (49% of 61 taxa); these opposing trends have fostered a shift in community composition in some locations. Declines were least prevalent in the AfricanEurasian Flyway (29%), but similarly prevalent in the remaining three global flyways (44–54%). Widespread, and in some cases accelerating, declines underscore the urgent conservation needs faced by many Arctic terrestrial bird species.
Modular assembly of proteins on nanoparticles
Generally, the high diversity of protein properties necessitates the development of unique nanoparticle bio-conjugation methods, optimized for each different protein. Here we describe a universal bio-conjugation approach which makes use of a new recombinant fusion protein combining two distinct domains. The N-terminal part is Glutathione S-Transferase (GST) from Schistosoma japonicum , for which we identify and characterize the remarkable ability to bind gold nanoparticles (GNPs) by forming gold–sulfur bonds (Au–S). The C-terminal part of this multi-domain construct is the SpyCatcher from Streptococcus pyogenes , which provides the ability to capture recombinant proteins encoding a SpyTag. Here we show that SpyCatcher can be immobilized covalently on GNPs through GST without the loss of its full functionality. We then show that GST-SpyCatcher activated particles are able to covalently bind a SpyTag modified protein by simple mixing, through the spontaneous formation of an unusual isopeptide bond. The conjugation of nanoparticles and proteins can require complex optimization for the addition of different proteins. Here, the authors report on the development of a simple isopeptide bond forming method of conjoining gold nanoparticles and fusion proteins.
Fuelling conditions at staging sites can mitigate Arctic warming effects in a migratory bird
Under climate warming, migratory birds should align reproduction dates with advancing plant and arthropod phenology. To arrive on the breeding grounds earlier, migrants may speed up spring migration by curtailing the time spent en route , possibly at the cost of decreased survival rates. Based on a decades-long series of observations along an entire flyway, we show that when refuelling time is limited, variation in food abundance in the spring staging area affects fitness. Bar-tailed godwits migrating from West Africa to the Siberian Arctic reduce refuelling time at their European staging site and thus maintain a close match between breeding and tundra phenology. Annual survival probability decreases with shorter refuelling times, but correlates positively with refuelling rate, which in turn is correlated with food abundance in the staging area. This chain of effects implies that conditions in the temperate zone determine the ability of godwits to cope with climate-related changes in the Arctic. Advancing phenological timing is a risk for migratory birds, particularly in the Arctic where change is most rapid. Here, the authors show that bar-tailed godwits can adjust for phenological shifts by fuelling faster at staging areas to arrive at breeding sites in time.
Documenting lemming population change in the Arctic: Can we detect trends?
Lemmings are a key component of tundra food webs and changes in their dynamics can affect the whole ecosystem. We present a comprehensive overview of lemming monitoring and research activities, and assess recent trends in lemming abundance across the circumpolar Arctic. Since 2000, lemmings have been monitored at 49 sites of which 38 are still active. The sites were not evenly distributed with notably Russia and high Arctic Canada underrepresented. Abundance was monitored at all sites, but methods and levels of precision varied greatly. Other important attributes such as health, genetic diversity and potential drivers of population change, were often not monitored. There was no evidence that lemming populations were decreasing in general, although a negative trend was detected for low arctic populations sympatric with voles. To keep the pace of arctic change, we recommend maintaining long-term programmes while harmonizing methods, improving spatial coverage and integrating an ecosystem perspective.
Food web interactions of two breeding Arctic shorebird species, little stint Calidris minuta and red knot Calidris canutus, are shaped by their elevational distribution
Birds often have to choose their nest site location along a food safety axis, balancing nest predation danger with the food requirements of themselves and their offspring. This is probably most important for precocial species, such as most shorebirds, in which both chicks and parents need access to food resources in the surroundings of the nest, at least during the first days of life of the chicks. In many Arctic ecosystems, shorebird nests are typically prone to predation by both avian and terrestrial predators, especially in lemming-poor years. Among other factors, the strength of the trophic interactions between shorebirds, their prey, and their predators depend on how all of these are distributed across space. During two breeding seasons in northern Taimyr, North-Central Russia, we investigated how the spatial distribution of red knot Calidris canutus and little stint Calidris minuta nests and broods overlaps with the local food landscape and also with the distribution of avian predators and their main prey, lemmings. We found that the two shorebird species use different habitats that vary in arthropod community structure in accordance with the birds’ diet: while little stints selected lower elevations where chironomid midges Chironomidae are more abundant, red knots selected higher elevations where crane flies Tipulidae are more abundant. Furthermore, little stints share low-elevation habitats with lemmings and predators, while red knots inhabit higher elevations averted by both lemmings and avian predators. We found higher nest predation for little stint nests than for red knots nests, especially in a low-lemming year. Our results thus support the idea that food web interactions are driven by landscape and community aspects.
Magnetic Field Effect on the Oxidation of Unsaturated Compounds by Molecular Oxygen
A quantum-chemical analysis of the effect of a constant magnetic field on radical formation in the processes of chain oxidation of organic compounds by molecular oxygen is presented. The calculation of the total electronic energies and thermodynamic functions of the compounds involved in the reactions was performed by the density functional method with the hybrid exchange-correlation functional of Becke, Lee, Yang and Parr DFT B3LYP/6-311G** using the NWChem software package. The effect of the magnetic field on the individual stages of chain oxidation is associated with the evolution of radical pairs. It is assumed that the dipole–dipole interaction in a radical pair is not averaged by the diffusion of radicals and should be taken into account. To a large extent, the magnetic field effect (MFE) value is influenced by the ratio between the relaxation time of the oscillatory-excited state in the radical pair (tvib) and the relaxation time of the inter-combination transitions (tst). Although the developed technique refers to liquid-phase reactions, it can be used to study the MFE for oxidation of biologically significant compounds in multiphase systems, such as micelles, liposomes and membranes.