Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
15,123
result(s) for
"Song, Lu"
Sort by:
Transcriptome analysis and development of EST-SSR markers in Anoectochilus emeiensis (Orchidaceae)
2022
Anoectochilus emeiensis
K. Y. Lang, together with other
Anoectochilus
species, has long been used as the main source of many traditional Chinese medicines. Owing to the shortcomings of molecular markers, the study of the genetic diversity and medicinal component synthesis mechanism of the endemic
Anoectochilus
species has been delayed. In this study, I carried out a transcriptome analysis of
A
.
emeiensis
. A total of 78,381 unigenes were assembled from 64.2 million reads, and 47,541 (60.65%) unigenes were matched to known proteins in the public databases. Then, 9284 expressed sequence tag-derived simple sequence repeats (EST-SSRs) were identified, and the frequency of SSRs in the
A
.
emeiensis
transcriptome was 9.88%. Trinucleotide repeats (3699, 39.84%) were the most common type, followed by dinucleotide (3251, 35.02%) and mononucleotide (1750, 18.85%) repeats. Based on the SSR sequence, 6683 primer pairs were successfully designed, 40 primer pairs were randomly selected, and 10 primer pairs were identified as polymorphic loci from 186 individuals of
A
.
emeiensis
. The EST-SSR markers examined in this study will be informative for future population genetic studies of
A
.
emeiensis
.
Journal Article
Transcriptome analysis and development of EST-SSR markers in Anoectochilus emeiensis
2022
Anoectochilus emeiensis K. Y. Lang, together with other Anoectochilus species, has long been used as the main source of many traditional Chinese medicines. Owing to the shortcomings of molecular markers, the study of the genetic diversity and medicinal component synthesis mechanism of the endemic Anoectochilus species has been delayed. In this study, I carried out a transcriptome analysis of A. emeiensis. A total of 78,381 unigenes were assembled from 64.2 million reads, and 47,541 (60.65%) unigenes were matched to known proteins in the public databases. Then, 9284 expressed sequence tag-derived simple sequence repeats (EST-SSRs) were identified, and the frequency of SSRs in the A. emeiensis transcriptome was 9.88%. Trinucleotide repeats (3699, 39.84%) were the most common type, followed by dinucleotide (3251, 35.02%) and mononucleotide (1750, 18.85%) repeats. Based on the SSR sequence, 6683 primer pairs were successfully designed, 40 primer pairs were randomly selected, and 10 primer pairs were identified as polymorphic loci from 186 individuals of A. emeiensis. The EST-SSR markers examined in this study will be informative for future population genetic studies of A. emeiensis.
Journal Article
Hsa_circ_0003258 promotes prostate cancer metastasis by complexing with IGF2BP3 and sponging miR-653-5p
2022
Background
More and more studies have shown that circular RNAs (circRNAs) play a critical regulatory role in many cancers. However, the potential molecular mechanism of circRNAs in prostate cancer (PCa) remains largely unknown.
Methods
Differentially expressed circRNAs were identified by RNA sequencing. The expression of hsa_circ_0003258 was evaluated using quantitative real-time PCR and RNA in situ hybridization. The impacts of hsa_circ_0003258 on the metastasis of PCa cells were investigated by a series of in vitro and in vivo assays. Lastly, the underlying mechanism of hsa_circ_0003258 was revealed by Western blot, biotin-labeled RNA pulldown, RNA immunoprecipitation, luciferase assays and rescue experiments.
Results
Increased expression of hsa_circ_0003258 was found in PCa tissues and was associated with advanced TNM stage and ISUP grade. Overexpression of hsa_circ_0003258 promoted PCa cell migration by inducing epithelial mesenchymal transformation (EMT) in vitro as well as tumor metastasis in vivo
,
while knockdown of hsa_circ_0003258 exerts the opposite effect. Mechanistically, hsa_circ_0003258 could elevate the expression of Rho GTPase activating protein 5 (ARHGAP5) via sponging miR-653-5p. In addition, hsa_circ_0003258 physically binds to insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) in the cytoplasm and enhanced HDAC4 mRNA stability, in which it activates ERK signalling pathway, then triggers EMT programming and finally accelerates the metastasis of PCa.
Conclusions
Upregulation of hsa_circ_0003258 drives tumor progression through both hsa_circ_0003258/miR-653-5p/ARHGAP5 axis and hsa_circ_0003258/IGF2BP3 /HDAC4 axis. Hsa_circ_0003258 may act as a promising biomarker for metastasis of PCa and an attractive target for PCa intervention.
Journal Article
CircSMARCC1 facilitates tumor progression by disrupting the crosstalk between prostate cancer cells and tumor-associated macrophages via miR-1322/CCL20/CCR6 signaling
by
Yu, Yu-zhong
,
Li, Kang-jin
,
Xie, Tao
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
Antibodies
2022
Background
Circular RNAs (circRNAs) mediate the infiltration of tumor-associated macrophages (TAMs) to facilitate carcinogenesis and development of various types of cancers. However, the role of circRNAs in regulating macrophages in prostate cancer (PCa) remains uncertain.
Methods
Differentially expressed circRNAs in PCa were identified by RNA sequencing. The expression of circSMARCC1 was recognized and evaluated using fluorescence in situ hybridization and quantitative real-time PCR. The oncogenic role of circSMARCC1 in PCa tumor proliferation and metastasis was investigated through a series of in vitro and in vivo assays. Finally, Western blot, biotin-labeled RNA pulldown, luciferase assay, rescue experiments, and co-culture experiments with TAMs were conducted to reveal the mechanistic role of circSMARCC1.
Results
CircSMARCC1 was dramatically up-regulated in PCa cells, plasma and tissues. Overexpression of circSMARCC1 promotes tumor proliferation and metastasis both in vitro and in vivo, whereas knockdown of circSMARCC1 exerts the opposite effects. Mechanistically, circSMARCC1 regulates the expression of CC-chemokine ligand 20 (CCL20) via sponging miR-1322 and activate PI3K-Akt signaling pathway involved in the proliferation and epithelial mesenchymal transformation. More importantly, high expression of circSMARCC1 was positively associated with colonization of CD68
+
/CD163
+
/CD206
+
TAMs in tumor microenvironment. In addition, overexpression of circSMARCC1 facilitates the expression of CD163 in macrophages through the CCL20-CCR6 axis, induces TAMs infiltration and M2 polarization, thereby leading to PCa progression.
Conclusions
CircSMARCC1 up-regulates the chemokine CCL20 secretion by sponging miR-1322, which is involved in the crosstalk between tumor cells and TAMs by targeting CCL20/CCR6 signaling to promote progression of PCa.
Journal Article
DNA Walkers for Biosensing Development
2022
The ability to design nanostructures with arbitrary shapes and controllable motions has made DNA nanomaterials used widely to construct diverse nanomachines with various structures and functions. The DNA nanostructures exhibit excellent properties, including programmability, stability, biocompatibility, and can be modified with different functional groups. Among these nanoscale architectures, DNA walker is one of the most popular nanodevices with ingenious design and flexible function. In the past several years, DNA walkers have made amazing progress ranging from structural design to biological applications including constructing biosensors for the detection of cancer‐associated biomarkers. In this review, the key driving forces of DNA walkers are first summarized. Then, the DNA walkers with different numbers of legs are introduced. Furthermore, the biosensing applications of DNA walkers including the detection‐ of nucleic acids, proteins, ions, and bacteria are summarized. Finally, the new frontiers and opportunities for developing DNA walker‐based biosensors are discussed.
In this review, the key forces of driving DNA walkers are summarized. Besides, a variety of DNA walkers with different numbers of legs are discussed. And DNA walkers‐based biosensors are given examples, including nucleic acids biosensors, proteins biosensors, ions biosensors, and bacteria biosensors. Eventually, the challenges and opportunities of developing DNA walker‐based biosensors are discussed.
Journal Article
Strain localisation and failure at twin-boundary complexions in nickel-based superalloys
2020
Twin boundaries (TBs) in Ni-based superalloys are vulnerable sites for failure in demanding environments, and a current lack of mechanistic understanding hampers the reliable lifetime prediction and performance optimisation of these alloys. Here we report the discovery of an unexpected γ″ precipitation mechanism at TBs that takes the responsibility for alloy failure in demanding environments. Using multiscale microstructural and mechanical characterisations (from millimetre down to atomic level) and DFT calculations, we demonstrate that abnormal γ″ precipitation along TBs accounts for the premature dislocation activities and pronounced strain localisation associated with TBs during mechanical loading, which serves as a precursor for crack initiation. We clarify the physical origin of the TBs-related cracking at the atomic level of γ″-strengthened Ni-based superalloys in a hydrogen containing environment, and provide practical methods to mitigate the adverse effect of TBs on the performance of these alloys.
Coherent twin boundaries in nickel-based superalloys are vulnerable sites for alloy failure in demanding environments. Here, the authors show that the abnormal γ″ precipitation mechanism at twin boundaries is responsible for pronounced strain localisation and subsequent failure.
Journal Article
Recent advances in reliability analysis of aeroengine rotor system: a review
2022
PurposeTo provide valuable information for scholars to grasp the current situations, hotspots and future development trends of reliability analysis area.Design/methodology/approachIn this paper, recent researches on efficient reliability analysis and applications in complex engineering structures like aeroengine rotor systems are reviewd.FindingsThe recent reliability analysis advances of engineering application in aeroengine rotor system are highlighted, it is worth pointing out that the surrogate model methods hold great efficiency and accuracy advantages in the complex reliability analysis of aeroengine rotor system, since its strong computing power can effectively reduce the analysis time consumption and accelerate the development procedures of aeroengine. Moreover, considering the multi-objective, multi-disciplinary, high-dimensionality and time-varying problems are the common problems in various complex engineering fields, the surrogate model methods and its developed methods also have broad application prospects in the future.Originality/valueFor the strong demand for efficient reliability design technique, this review paper may help to highlights the benefits of reliability analysis methods not only in academia but also in practical engineering application like aeroengine rotor system.
Journal Article
Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes
2020
Chiral nitriles and their derivatives are prevalent in pharmaceuticals and bioactive compounds. Enantioselective alkene hydrocyanation represents a convenient and efficient approach for synthesizing these molecules. However, a generally applicable method featuring a broad substrate scope and high functional group tolerance remains elusive. Here, we address this long-standing synthetic problem using dual electrocatalysis. Using this strategy, we leverage electrochemistry to seamlessly combine two canonical radical reactions—cobalt-mediated hydrogen-atom transfer and copper-promoted radical cyanation—to accomplish highly enantioselective hydrocyanation without the need for stoichiometric oxidants. We also harness electrochemistry’s unique feature of precise potential control to optimize the chemoselectivity of challenging substrates. Computational analysis uncovers the origin of enantio-induction, for which the chiral catalyst imparts a combination of attractive and repulsive non-covalent interactions to direct the enantio-determining C–CN bond formation. This work demonstrates the power of electrochemistry in accessing new chemical space and providing solutions to pertinent challenges in synthetic chemistry.A general method for the enantioselective hydrocyanation of alkenes has been a long-standing synthetic challenge. Now, using a dual electrocatalytic approach that combines two synergistic redox catalytic cycles, a wide variety of chiral nitriles can be synthesized from conjugated alkenes in high enantioselectivity.
Journal Article
The usefulness of obesity and lipid-related indices to predict the presence of Non-alcoholic fatty liver disease
2021
Background
Conicity index, body-shape index, lipid accumulation product (LAP), waist circumference (WC), triglyceride, triglyceride-glucose (TyG) index, hepatic steatosis index (HSI), waist-to-height ratio (WHtR), TyG index-related parameters (TyG-WHtR, TyG-BMI, TyG-WC), body mass index (BMI), visceral adiposity index, triglyceride to high-density lipoprotein cholesterol ratio and body roundness index have been reported as reliable markers of non-alcoholic fatty liver disease (NAFLD). However, there is debate about which of the above obesity and lipid-related indices has the best predictive performance for NAFLD risk.
Methods
This study included 6870 female and 7411 male subjects, and 15 obesity and lipid-related indices were measured and calculated. NAFLD was diagnosed by abdominal ultrasound. The area under the curve (AUC) of 15 obesity and lipid-related indices were calculated by receiver operating characteristic (ROC) analysis.
Results
Among the 15 obesity and lipid-related indices, the TyG index-related parameters had the strongest association with NAFLD. ROC analysis showed that except for ABSI, the other 14 parameters had high predictive value in identifying NAFLD, especially in female and young subjects. Most notably, TyG index-related parameters performed better than other parameters in predicting NAFLD in most populations. In the female population, the AUC of TyG-WC for predicting NAFLD was 0.9045, TyG-BMI was 0.9084, and TyG-WHtR was 0.9071. In the male population, the AUC of TyG-WC was 0.8356, TyG-BMI was 0.8428, and TyG-WHtR was 0.8372. In addition, BMI showed good NAFLD prediction performance in most subgroups (AUC>0.8).
Conclusions
Our data suggest that TyG index-related parameters, LAP, HSI, BMI, and WC appear to be good predictors of NAFLD. Of these parameters, TyG index-related parameters showed the best predictive potential.
Journal Article