Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
188 result(s) for "Song, Qijian"
Sort by:
POWR1 is a domestication gene pleiotropically regulating seed quality and yield in soybean
Seed protein, oil content and yield are highly correlated agronomically important traits that essentially account for the economic value of soybean. The underlying molecular mechanisms and selection of these correlated seed traits during soybean domestication are, however, less known. Here, we demonstrate that a CCT gene, POWR1 , underlies a large-effect protein/oil QTL. A causative TE insertion truncates its CCT domain and substantially increases seed oil content, weight, and yield while decreasing protein content. POWR1 pleiotropically controls these traits likely through regulating seed nutrient transport and lipid metabolism genes. POWR1 is also a domestication gene. We hypothesize that the TE insertion allele is exclusively fixed in cultivated soybean due to selection for larger seeds during domestication, which significantly contributes to shaping soybean with increased yield/seed weight/oil but reduced protein content. This study provides insights into soybean domestication and is significant in improving seed quality and yield in soybean and other crop species. In soybean production, level of seed protein frequently shows a negative correlation with seed oil content and yield. Here, the authors report a CCT gene pleiotropically regulates these traits and the selection of larger seeds determining allele leads to higher oil content but lower protein content in soybean cultivars.
Genome sequence of the palaeopolyploid soybean
Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.
Development and evaluation of SoySNP50K, a high-density genotyping array for soybean
The objective of this research was to identify single nucleotide polymorphisms (SNPs) and to develop an Illumina Infinium BeadChip that contained over 50,000 SNPs from soybean (Glycine max L. Merr.). A total of 498,921,777 reads 35-45 bp in length were obtained from DNA sequence analysis of reduced representation libraries from several soybean accessions which included six cultivated and two wild soybean (G. soja Sieb. et Zucc.) genotypes. These reads were mapped to the soybean whole genome sequence and 209,903 SNPs were identified. After applying several filters, a total of 146,161 of the 209,903 SNPs were determined to be ideal candidates for Illumina Infinium II BeadChip design. To equalize the distance between selected SNPs, increase assay success rate, and minimize the number of SNPs with low minor allele frequency, an iteration algorithm based on a selection index was developed and used to select 60,800 SNPs for Infinium BeadChip design. Of the 60,800 SNPs, 50,701 were targeted to euchromatic regions and 10,000 to heterochromatic regions of the 20 soybean chromosomes. In addition, 99 SNPs were targeted to unanchored sequence scaffolds. Of the 60,800 SNPs, a total of 52,041 passed Illumina's manufacturing phase to produce the SoySNP50K iSelect BeadChip. Validation of the SoySNP50K chip with 96 landrace genotypes, 96 elite cultivars and 96 wild soybean accessions showed that 47,337 SNPs were polymorphic and generated successful SNP allele calls. In addition, 40,841 of the 47,337 SNPs (86%) had minor allele frequencies ≥ 10% among the landraces, elite cultivars and the wild soybean accessions. A total of 620 and 42 candidate regions which may be associated with domestication and recent selection were identified, respectively. The SoySNP50K iSelect SNP beadchip will be a powerful tool for characterizing soybean genetic diversity and linkage disequilibrium, and for constructing high resolution linkage maps to improve the soybean whole genome sequence assembly.
High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence
Background The Soybean Consensus Map 4.0 facilitated the anchoring of 95.6% of the soybean whole genome sequence developed by the Joint Genome Institute, Department of Energy, but its marker density was only sufficient to properly orient 66% of the sequence scaffolds. The discovery and genetic mapping of more single nucleotide polymorphism (SNP) markers were needed to anchor and orient the remaining genome sequence. To that end, next generation sequencing and high-throughput genotyping were combined to obtain a much higher resolution genetic map that could be used to anchor and orient most of the remaining sequence and to help validate the integrity of the existing scaffold builds. Results A total of 7,108 to 25,047 predicted SNPs were discovered using a reduced representation library that was subsequently sequenced by the Illumina sequence-by-synthesis method on the clonal single molecule array platform. Using multiple SNP prediction methods, the validation rate of these SNPs ranged from 79% to 92.5%. A high resolution genetic map using 444 recombinant inbred lines was created with 1,790 SNP markers. Of the 1,790 mapped SNP markers, 1,240 markers had been selectively chosen to target existing unanchored or un-oriented sequence scaffolds, thereby increasing the amount of anchored sequence to 97%. Conclusion We have demonstrated how next generation sequencing was combined with high-throughput SNP detection assays to quickly discover large numbers of SNPs. Those SNPs were then used to create a high resolution genetic map that assisted in the assembly of scaffolds from the 8× whole genome shotgun sequences into pseudomolecules corresponding to chromosomes of the organism.
A genome-wide association study of seed protein and oil content in soybean
Background Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. Results A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD ( r 2 ) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. Conclusions This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise marker-assisted allele selection and will expedite positional cloning of the causal gene(s).
Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm
Background Soybean ( Glycine max ) is a photoperiod-sensitive and self-pollinated species. Days to flowering (DTF) and maturity (DTM), duration of flowering-to-maturity (DFTM) and plant height (PH) are crucial for soybean adaptability and yield. To dissect the genetic architecture of these agronomically important traits, a population consisting of 309 early maturity soybean germplasm accessions was genotyped with the Illumina Infinium SoySNP50K BeadChip and phenotyped in multiple environments. A genome-wide association study (GWAS) was conducted using a mixed linear model that involves both relative kinship and population structure. Results The linkage disequilibrium (LD) decayed slowly in soybean, and a substantial difference in LD pattern was observed between euchromatic and heterochromatic regions. A total of 27, 6, 18 and 27 loci for DTF, DTM, DFTM and PH were detected via GWAS, respectively. The Dt1 gene was identified in the locus strongly associated with both DTM and PH. Ten candidate genes homologous to Arabidopsis flowering genes were identified near the peak single nucleotide polymorphisms (SNPs) associated with DTF. Four of them encode MADS-domain containing proteins. Additionally, a pectin lyase-like gene was also identified in a major-effect locus for PH where LD decayed rapidly. Conclusions This study identified multiple new loci and refined chromosomal regions of known loci associated with DTF, DTM, DFTM and/or PH in soybean. It demonstrates that GWAS is powerful in dissecting complex traits and identifying candidate genes although LD decayed slowly in soybean. The loci and trait-associated SNPs identified in this study can be used for soybean genetic improvement, especially the major-effect loci associated with PH could be used to improve soybean yield potential. The candidate genes may serve as promising targets for studies of molecular mechanisms underlying the related traits in soybean.
Genome-wide association study and genomic selection for yield and related traits in soybean
Soybean [ Glycine max (L . ) Merr .] is a crop of great interest worldwide. Exploring molecular approaches to increase yield genetic gain has been one of the main challenges for soybean breeders and geneticists. Agronomic traits such as maturity, plant height, and seed weight have been found to contribute to yield. In this study, a total of 250 soybean accessions were genotyped with 10,259 high-quality SNPs postulated from genotyping by sequencing (GBS) and evaluated for grain yield, maturity, plant height, and seed weight over three years. A genome-wide association study (GWAS) was performed using a Bayesian Information and Linkage Disequilibrium Iteratively Nested Keyway (BLINK) model. Genomic selection (GS) was evaluated using a ridge regression best linear unbiased predictor (rrBLUP) model. The results revealed that 20, 31, 37, and 23 SNPs were significantly associated with maturity, plant height, seed weight, and yield, respectively; Many SNPs were mapped to previously described maturity and plant height loci ( E2 , E4 , and Dt1 ) and a new plant height locus was mapped to chromosome 20. Candidate genes were found in the vicinity of the two SNPs with the highest significant levels associated with yield, maturity, plant height, seed weight, respectively. A 11.5-Mb region of chromosome 10 was associated with both yield and seed weight. Overall, the accuracy of GS was dependent on the trait, year, and population structure, and high accuracy indicates that these agronomic traits can be selected in molecular breeding through GS. The SNP markers identified in this study can be used to improve yield and agronomic traits through the marker-assisted selection and GS in breeding programs.
Genome-Wide Association Study of Anthracnose Resistance in Andean Beans (Phaseolus vulgaris)
Anthracnose is a seed-borne disease of common bean (Phaseolus vulgaris L.) caused by the fungus Colletotrichum lindemuthianum, and the pathogen is cosmopolitan in distribution. The objectives of this study were to identify new sources of anthracnose resistance in a diverse panel of 230 Andean beans comprised of multiple seed types and market classes from the Americas, Africa, and Europe, and explore the genetic basis of this resistance using genome-wide association mapping analysis (GWAS). Twenty-eight of the 230 lines tested were resistant to six out of the eight races screened, but only one cultivar Uyole98 was resistant to all eight races (7, 39, 55, 65, 73, 109, 2047, and 3481) included in the study. Outputs from the GWAS indicated major quantitative trait loci (QTL) for resistance on chromosomes, Pv01, Pv02, and Pv04 and two minor QTL on Pv10 and Pv11. Candidate genes associated with the significant SNPs were detected on all five chromosomes. An independent QTL study was conducted to confirm the physical location of the Co-1 locus identified on Pv01 in an F4:6 recombinant inbred line (RIL) population. Resistance was determined to be conditioned by the single dominant gene Co-1 that mapped between 50.16 and 50.30 Mb on Pv01, and an InDel marker (NDSU_IND_1_50.2219) tightly linked to the gene was developed. The information reported will provide breeders with new and diverse sources of resistance and genomic regions to target in the development of anthracnose resistance in Andean beans.
Genomic prediction of optimal cross combinations to accelerate genetic improvement of soybean (Glycine max)
Improving yield is a primary soybean breeding goal, as yield is the main determinant of soybean’s profitability. Within the breeding process, selection of cross combinations is one of most important elements. Cross prediction will assist soybean breeders in identifying the best cross combinations among parental genotypes prior to crossing, increasing genetic gain and breeding efficiency. In this study optimal cross selection methods were created and applied in soybean and validated using historical data from the University of Georgia soybean breeding program, under multiple training set compositions and marker densities utilizing multiple genomic selection models for marker evaluation. Plant materials consisted of 702 advanced breeding lines evaluated in multiple environments and genotyped using SoySNP6k BeadChips. An additional marker set, the SoySNP3k marker set, was tested in this study as well. Optimal cross selection methods were used to predict the yield of 42 previously made crosses and compared to the performance of the cross’s offspring in replicated field trials. The best prediction accuracy was obtained when using Extended Genomic BLUP with the SoySNP6k marker set, consisting of 3,762 polymorphic markers, with an accuracy of 0.56 with a training set maximally related to the crosses predicted and 0.4 in a training set with minimized relatedness to predicted crosses. Prediction accuracy was most significantly impacted by training set relatedness to the predicted crosses, marker density, and the genomic model used to predict marker effects. The usefulness criterion selected had an impact on prediction accuracy within training sets with low relatedness to the crosses predicted. Optimal cross prediction provides a useful method that assists plant breeders in selecting crosses in soybean breeding.
Development of a versatile resource for post-genomic research through consolidating and characterizing 1500 diverse wild and cultivated soybean genomes
Background With advances in next-generation sequencing technologies, an unprecedented amount of soybean accessions has been sequenced by many individual studies and made available as raw sequencing reads for post-genomic research. Results To develop a consolidated and user-friendly genomic resource for post-genomic research, we consolidated the raw resequencing data of 1465 soybean genomes available in the public and 91 highly diverse wild soybean genomes newly sequenced. These altogether provided a collection of 1556 sequenced genomes of 1501 diverse accessions (1.5 K). The collection comprises of wild, landraces and elite cultivars of soybean that were grown in East Asia or major soybean cultivating areas around the world. Our extensive sequence analysis discovered 32 million single nucleotide polymorphisms (32mSNPs) and revealed a SNP density of 30 SNPs/kb and 12 non-synonymous SNPs/gene reflecting a high structural and functional genomic diversity of the new collection. Each SNP was annotated with 30 categories of structural and/or functional information. We further identified paired accessions between the 1.5 K and 20,087 (20 K) accessions in US collection as genomic “equivalent” accessions sharing the highest genomic identity for minimizing the barriers in soybean germplasm exchange between countries. We also exemplified the utility of 32mSNPs in enhancing post-genomics research through in-silico genotyping, high-resolution GWAS, discovering and/or characterizing genes and alleles/mutations, identifying germplasms containing beneficial alleles that are potentially experiencing artificial selection. Conclusion The comprehensive analysis of publicly available large-scale genome sequencing data of diverse cultivated accessions and the newly in-house sequenced wild accessions greatly increased the soybean genome-wide variation resolution. This could facilitate a variety of genetic and molecular-level analyses in soybean. The 32mSNPs and 1.5 K accessions with their comprehensive annotation have been made available at the SoyBase and Ag Data Commons. The dataset could further serve as a versatile and expandable core resource for exploring the exponentially increasing genome sequencing data for a variety of post-genomic research.