Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
106 result(s) for "Song, Shaojie"
Sort by:
Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models
pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in northern China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA) and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic) to as high as 7 (neutral). In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol-phase composition as inputs (i.e., reverse mode) are sensitive to the measurement errors of ionic species, and inferred pH values exhibit a bimodal distribution, with peaks between −2 and 2 and between 7 and 10, depending on whether anions or cations are in excess. Calculations using total (gas plus aerosol phase) measurements as inputs (i.e., forward mode) are affected much less by these measurement errors. In future studies, the reverse mode should be avoided whereas the forward mode should be used. Forward-mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5) for fine particles in northern China winter haze, indicating further that ammonia plays an important role in determining this property. The assumed particle phase state, either stable (solid plus liquid) or metastable (only liquid), does not significantly impact pH predictions. The unrealistic pH values of about 7 in a few previous studies (using the standard ISORROPIA model and stable state assumption) resulted from coding errors in the model, which have been identified and fixed in this study.
Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze
Abstract Severe events of wintertime particulate air pollution in Beijing (winter haze) are associated with high relative humidity (RH) and fast production of particulate sulfate from the oxidation of sulfur dioxide (SO 2 ) emitted by coal combustion. There has been considerable debate regarding the mechanism for SO 2 oxidation. Here we show evidence from field observations of a haze event that rapid oxidation of SO 2 by nitrogen dioxide (NO 2 ) and nitrous acid (HONO) takes place, the latter producing nitrous oxide (N 2 O). Sulfate shifts to larger particle sizes during the event, indicative of fog/cloud processing. Fog and cloud readily form under winter haze conditions, leading to high liquid water contents with high pH (>5.5) from elevated ammonia. Such conditions enable fast aqueous-phase oxidation of SO 2 by NO 2 , producing HONO which can in turn oxidize SO 2 to yield N 2 O.This mechanism could provide an explanation for sulfate formation under some winter haze conditions.
Projected changes in wind power potential over China and India in high resolution climate models
Abstract As more countries commit to emissions reductions by midcentury to curb anthropogenic climate change, decarbonization of the electricity sector becomes a first-order task in reaching this goal. Renewables, particularly wind and solar power, will be predominant components of this transition. How availability of the wind and solar resource will change in the future in response to regional climate changes is an important and underdiscussed topic of the decarbonization process. Here, we study changes in potential for wind power in China and India, evaluating prospectively until the year 2060. To do this, we study a downscaled, high-resolution multimodel ensemble of CMIP5 models under high and low emissions scenarios. While there is some intermodel variability, we find that spatial changes are generally consistent across models, with decreases of up to 965 (a 1% change) and 186 TWh (a 2% change) in annual electricity generation potential for China and India, respectively. Compensating for the declining resource are weakened seasonal and diurnal variabilities, allowing for easier large-scale wind power integration. We conclude that while the ensemble indicates available wind resource over China and India will decline slightly in the future, there remains enormous potential for significant wind power expansion, which must play a major role in carbon neutral aspirations.
Production of hydrogen from offshore wind in China and cost-competitive supply to Japan
Abstract The Japanese government has announced a commitment to net-zero greenhouse gas emissions by 2050. It envisages an important role for hydrogen in the nation’s future energy economy. This paper explores the possibility that a significant source for this hydrogen could be produced by electrolysis fueled by power generated from offshore wind in China. Hydrogen could be delivered to Japan either as liquid, or bound to a chemical carrier such as toluene, or as a component of ammonia. The paper presents an analysis of factors determining the ultimate cost for this hydrogen, including expenses for production, storage, conversion, transport, and treatment at the destination. It concludes that the Chinese source could be delivered at a volume and cost consistent with Japan’s idealized future projections.
Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing
Air quality models have not been able to reproduce the magnitude of the observed concentrations of fine particulate matter (PM2.5) during wintertime Chinese haze events. The discrepancy has been at least partly attributed to low biases in modeled sulfate production rates, due to the lack of heterogeneous sulfate production on aerosols in the models. In this study, we explicitly implement four heterogeneous sulfate formation mechanisms into a regional chemical transport model, in addition to gas-phase and in-cloud sulfate production. We compare the model results with observations of sulfate concentrations and oxygen isotopes, Δ17O(SO42-), in the winter of 2014–2015, the latter of which is highly sensitive to the relative importance of different sulfate production mechanisms. Model results suggest that heterogeneous sulfate production on aerosols accounts for about 20 % of sulfate production in clean and polluted conditions, partially reducing the modeled low bias in sulfate concentrations. Model sensitivity studies in comparison with the Δ17O(SO42-) observations suggest that heterogeneous sulfate formation is dominated by transition metal ion-catalyzed oxidation of SO2.
Enhanced aerosol particle growth sustained by high continental chlorine emission in India
Many cities in India experience severe deterioration of air quality in winter. Particulate matter is a key atmospheric pollutant that impacts millions of people. In particular, the high mass concentration of particulate matter reduces visibility, which has severely damaged the economy and endangered human lives. But the underlying chemical mechanisms and physical processes responsible for initiating haze and fog formation remain poorly understood. Here we present the measurement results of chemical composition of particulate matter in Delhi and Chennai. We find persistently high chloride in Delhi and episodically high chloride in Chennai. These measurements, combined with thermodynamic modelling, suggest that in the presence of excess ammonia in Delhi, high local emission of hydrochloric acid partitions into aerosol water. The highly water-absorbing and soluble chloride in the aqueous phase substantially enhances aerosol water uptake through co-condensation, which sustains particle growth, leading to haze and fog formation. We therefore suggest that the high local concentration of gas-phase hydrochloric acid, possibly emitted from plastic-contained waste burning and industry, causes some 50% of the reduced visibility. Our work implies that identifying and regulating gaseous hydrochloric acid emissions could be critical to improve visibility and human health in India.Half of the reduced visibility due to haze formation in cities in India is attributed to local emission of gas-phase hydrochloric acid from waste-burning and industry, according to measurements of particulate matter and thermodynamic modelling.
Aerosol acidity and liquid water content regulate the dry deposition of inorganic reactive nitrogen
Ecosystem productivity is strongly modulated by the atmospheric deposition of inorganic reactive nitrogen (the sum of ammonium and nitrate). The individual contributions of ammonium and nitrate vary considerably over space and time, giving rise to complex patterns of nitrogen deposition. In the absence of rain, much of this complexity is driven by the large difference between the dry deposition velocity of nitrogen-containing molecules in the gas or condensed phase. Here we quantify how aerosol liquid water and acidity, through their impact on gas–particle partitioning, modulate the deposition velocity of total NH3 and total HNO3 individually while simultaneously affecting the dry deposition of inorganic reactive nitrogen. Four regimes of deposition velocity emerge: (i) HNO3 – fast, NH3 – slow, (ii) HNO3 – slow, NH3 – fast, (iii) HNO3 – fast, NH3 – fast, and (iv) HNO3 – slow, NH3 – slow. Conditions that favor partitioning of species to the aerosol phase strongly reduce the local deposition of reactive nitrogen species and promote their accumulation in the boundary layer and potential for long-range transport. Application of this framework to select locations around the world reveals fundamentally important insights: the dry deposition of total ammonia displays little sensitivity to pH and liquid water variations, except under conditions of extreme acidity and/or low aerosol liquid water content. The dry deposition of total nitric acid, on the other hand, is quite variable, with maximum deposition velocities (close to gas deposition rates) found in the eastern United States and minimum velocities in northern Europe and China. In the latter case, the low deposition velocity leads to up to 10-fold increases in PM2.5 nitrate aerosol, thus contributing to the high PM2.5 levels observed during haze episodes. In this light, aerosol pH and associated liquid water content can be considered to be control parameters that drive dry deposition flux and can accelerate the accumulation of aerosol contributing to intense haze events throughout the globe.
Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze
The chemical mechanisms responsible for rapid sulfate production, an important driver of winter haze formation in northern China, remain unclear. Here, we propose a potentially important heterogeneous hydroxymethanesulfonate (HMS) chemical mechanism. Through analyzing field measurements with aerosol mass spectrometry, we show evidence for a possible significant existence in haze aerosols of organosulfur primarily as HMS, misidentified as sulfate in previous observations. We estimate that HMS can account for up to about one-third of the sulfate concentrations unexplained by current air quality models. Heterogeneous production of HMS by SO2 and formaldehyde is favored under northern China winter haze conditions due to high aerosol water content, moderately acidic pH values, high gaseous precursor levels, and low temperature. These analyses identify an unappreciated importance of formaldehyde in secondary aerosol formation and call for more research on sources and on the chemistry of formaldehyde in northern China winter.
Contribution of hydroxymethanesulfonate (HMS) to severe winter haze in the North China Plain
Severe winter haze accompanied by high concentrations of fine particulate matter (PM2.5) occurs frequently in the North China Plain and threatens public health. Organic matter (OM) and sulfate are recognized as major components of PM2.5, while atmospheric models often fail to predict their high concentrations during severe winter haze due to incomplete understanding of secondary aerosol formation mechanisms. By using a novel combination of single-particle mass spectrometry and an optimized ion chromatography method, here we show that hydroxymethanesulfonate (HMS), formed by the reaction between formaldehyde (HCHO) and dissolved SO2 in aerosol water, is ubiquitous in Beijing during winter. The HMS concentration and the molar ratio of HMS to sulfate increased with the deterioration of winter haze. High concentrations of precursors (SO2 and HCHO) coupled with low oxidant levels, low temperature, high relative humidity, and moderately acidic pH facilitate the heterogeneous formation of HMS, which could account for up to 15 % of OM in winter haze and lead to up to 36 % overestimates of sulfate when using traditional ion chromatography. Despite the clean air actions having substantially reduced SO2 emissions, the HMS concentration and molar ratio of HMS to sulfate during severe winter haze increased from 2015 to 2016 with the growth in HCHO concentration. Our findings illustrate the significant contribution of heterogeneous HMS chemistry to severe winter haze in Beijing, which helps to improve the prediction of OM and sulfate and suggests that the reduction in HCHO can help to mitigate haze pollution.
An Unambiguous Synchronization Scheme for GNSS BOC Signals Based on Reconstructed Correlation Function
Binary offset carrier (BOC) modulation is a new modulation method that has been gradually applied to the Global Satellite Navigation System (GNSS) in recent years. However, due to the multi-peaks in its auto-correlation function (ACF), it will incur a false lock and generate synchronization ambiguous potentially. In this paper, an unambiguous synchronization method based on a reconstructed correlation function is proposed to solve the ambiguity problem. First, through the shape code vector constructed in this paper, the general cross-correlation function (CCF) expression of the BOC modulated signal will be obtained. Based on the features of the signal correlation function, it is decomposed into a matrix form of trigonometric functions. Then, it generates two local signal waves using a specific method, then the proposed method is implemented to obtain a no-side-peak correlation function by reconstructing the cross-correlation between the received signal and the two local signals. Simulations showed that it fully eliminates the side-peak threat and significantly removes the ambiguity during the synchronization of the BOC signals. This paper also gives the improved structure of acquisition and tracking. The detailed theoretical deduction of detection probability and code tracking error is demonstrated, and the corresponding phase discrimination function is given. In terms of de-blurring ability and detection probability performance, the proposed method outperformed other conventional approaches. The tracking performance was superior to the comparison methods and the phase discrimination curve only had a zero-crossing, which successfully removed the false lock points. In addition, in multipath mitigation, it outperformed the ACF of the BOC signal, and performs as well as the autocorrelation side-peak cancellation technique (ASPeCT) for BOC( , ) signals.