Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
92 result(s) for "Song, Yueyue"
Sort by:
Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metal‐Free Luminophores for Biomedical Applications
The development of simple, efficient, and biocompatible organic luminescent molecules is of great significance to the clinical transformation of biomaterials. In recent years, purely organic thermally activated delayed fluorescence (TADF) materials with an extremely small single‐triplet energy gap (ΔEST) have been considered as the most promising new‐generation electroluminescence emitters, which is an enormous breakthrough in organic optoelectronics. By merits of the unique photophysical properties, high structure flexibility, and reduced health risks, such metal‐free TADF luminophores have attracted tremendous attention in biomedical fields, including conventional fluorescence imaging, time‐resolved imaging and sensing, and photodynamic therapy. However, there is currently no systematic summary of the TADF materials for biomedical applications, which is presented in this review. Besides a brief introduction of the major developments of TADF material, the typical TADF mechanisms and fundamental principles on design strategies of TADF molecules and nanomaterials are subsequently described. Importantly, a specific emphasis is placed on the discussion of TADF materials for various biomedical applications. Finally, the authors make a forecast of the remaining challenges and future developments. This review provides insightful perspectives and clear prospects towards the rapid development of TADF materials in biomedicine, which will be highly valuable to exploit new luminescent materials. The review focuses on summarizing the current progresses of TADF materials for various biomedical applications, including conventional fluorescence imaging, time‐resolved imaging and sensing, and photodynamic therapy. Moreover, the TADF mechanisms and design strategies of TADF fluorophores in biomedicine are also described. Finally, it provides the insightful perspectives and clear prospects towards the rapid development of TADF materials in biomedicine.
Continuous Spatiotemporal Therapy of A Full-API Nanodrug via Multi-Step Tandem Endogenous Biosynthesis
Nanomedicine holds great promise to enhance cancer therapy. However, low active pharmaceutical ingredient (API) loading content, unpredictable drug release, and potential toxicity from excipients limit their translational capability. We herein report a full-API nanodrug composed of FDA-approved 5-aminolevulinic acid (ALA), human essential element Fe 3+ , and natural bioactive compound curcumin with an ideal API content and pH-responsive release profile for continuous spatiotemporal cancer therapy achieved by multi-step tandem endogenous biosynthesis. First, ALA enzymatically converts into photosensitizer protoporphyrin IX (PpIX). Afterward, multiple downstream products including carbon monoxide (CO), Fe 2+ , biliverdin (BV), and bilirubin (BR) are individually biosynthesized through the PpIX-heme-CO/Fe 2+ /BV-BR metabolic pathway, further cooperating with released Fe 3+ and curcumin, ultimately eliciting mitochondria damage, membrane disruption, and intracytoplasmic injury. This work not only provides a paradigm for exploiting diversified metabolites for tumor suppression, but also presents a safe and efficient full-API nanodrug, facilitating the practical translation of nanodrugs. Nanomedicine is important in cancer therapy, but loading, drug release, and therapeutic effectiveness issues limit the translation to the clinic. Here, authors report a full-API nanodrug with an ideal API content and pH-responsive release for continuous spatiotemporal cancer therapy based on PpIX-heme-CO/Fe 2+ /BV-BR metabolic pathway.
The burdock database: a multi-omic database for Arctium lappa, a food and medicinal plant
Background Burdock is a biennial herb of Asteraceae found in Northern Europe, Eurasia, Siberia, and China. Its mature dry fruits, called Niu Bang Zi , are recorded in various traditional Chinese medicine books. With the development of sequencing technology, the mitochondrial, chloroplast, and nuclear genomes, transcriptome, and sequence-related amplified polymorphism (SRAP) fingerprints of burdock have all been reported. To make better use of this data for further research and analysis, a burdock database was constructed. Results This burdock multi-omics database contains two burdock genome datasets, two transcriptome datasets, eight burdock chloroplast genomes, one burdock mitochondrial genome, one A. tomentosum chloroplast genome, one A. tomentosum mitochondrial genome, 26 phenotypes of burdock varieties, burdock rhizosphere-associated microorganisms, and chemical constituents of burdock fruit, pericarp, and kernel at different growth stages (using UPLC-Q-TOF–MS). The wild and cultivation distribution of burdock in China was summarized, and the main active components and pharmacological effects of burdock currently reported were concluded. The database contains ten central functional modules: Home, Genome, Transcriptome, Jbrowse, Search, Tools, SRAP fingerprints, Associated microorganisms, Chemical, and Publications. Among these, the “Tools” module can be used to perform sequence homology alignment (Blast), multiple sequence alignment analysis (Muscle), homologous protein prediction (Genewise), primer design (Primer), large-scale genome analysis (Lastz), and GO and KEGG enrichment analyses (GO Enrichment and KEGG Enrichment). Conclusions The database URL is http://210.22.121.250:41352/ . This burdock database integrates molecular and chemical data to provide a comprehensive information and analysis platform for interested researchers and can be of immense help to the cultivation, breeding, and molecular pharmacognosy research of burdock.
Joint Analysis of Multiple Omics to Describe the Biological Characteristics of Resistant Hypertension
Resistant hypertension (RH) may cause severe target organ damage and poses significant challenges in the field of hypertension prevention and treatment. Mining biological characteristics is crucial for exploring the pathogenesis of RH and for early diagnosis and treatment. Although several single‐omics studies have been conducted on RH, its complex pathogenesis has only been partially elucidated. In this study, metabolomics, proteomics, and transcriptomics were jointly analyzed in healthy subjects and patients with hypertension and RH. The multi‐omics analysis found that differential substances of RH were enriched in the HIF‐1 signaling pathway and that differential substances such as ascorbic acid, reduced glutathione (GSH), choline, citric acid, transferrin receptor (TfR), Egl‐9 family hypoxia‐inducible factor 2 (EGLN2), and glutathione peroxidase 1 (GPX1) were screened out. The results of intergroup comparisons were as follows: RH versus N: ascorbic acid (Fold Change (FC):0.42, p < 0.01), GSH (FC:0.65, p < 0.05), choline (FC:1.32, p < 0.05), citric acid (FC:0.48, p < 0.001), TfR (FC2.32, p < 0.001), GPX1 (FC:16.02, p < 0.001), EGLN2 (FC:0.76, p < 0.001); RH versus EH: ascorbic acid (FC:0.52, p < 0.05), GSH (FC:0.55, p < 0.05), choline (FC:1.28, p < 0.05), citric acid (FC:0.59, p < 0.001), TfR (FC:1.71, p < 0.001), GPX1 (FC:2.11, p < 0.05), EGLN2 (FC:0.76, p < 0.05). These differential substances may reflect the biology of RH. This study provides multi‐omics analysis for a deeper understanding of the complex molecular characteristics of RH, providing new insights into the pathogenesis, early diagnosis, and precise treatment of the disease.
Defect-complementation homologous recombination: A novel strategy for precise genome engineering of virulent phages
Engineered bacteriophages (phages) have been developed to overcome the limitations of natural phage therapies and serve as precision-targeted agents against drug-resistant bacterial infections. However, their application has been constrained by the low efficiency of existing genome-editing tools, largely because of the absence of effective selection markers. This study proposed a novel strategy, termed defect-complementation homologous recombination (DCHR), for precise phage genome editing. In this approach, CRISPR-Cas9 cleaves a donor plasmid in host cells to release a linear donor template carrying homology arms, an essential phage gene used as a selection marker, and two lox sites. The donor template undergoes homologous recombination with the genome of essential gene-deficient phage, thereby enabling targeted genome modifications. Using DCHR, we successfully generated large genomic deletions (1.48-kb gp0.4–0.7 and 1.02-kb gp4.3–4.7), achieved gene insertion (3.08-kb lacZ), and introduced a single-base substitution (TGA to TAA) in the stop codon of gp9 within the same T7 phage genome, all with 100 % accuracy. The significant advantages of DCHR are as follows: (i) High-efficiency screening: Only progeny phages derived from successful homologous recombination retain viability and replicative capacity, thereby greatly simplifying recombinant isolation. (ii) Editing flexibility: Unlike CRISPR-Cas systems, DCHR cannot be constrained by protospacer adjacent motif dependence and allows modifications across diverse genomic loci. (iii) High recombination efficiency: DCHR can achieve a recombinant phage titer of 3.1 × 105 PFU mL−1 (plaque-forming units per mL) without relying on exogenous homologous recombination systems. In summary, DCHR demonstrates potential as a precise and efficient general genome-editing tool that facilitates design of engineered phages and advances functional genomic studies.
The complete chloroplast genome of Pulsatilla campanella Fischer ex Krylov. (Ranunculaceae, Pulsatilla Miller)
The complete chloroplast genome of Pulsatilla campanella Fischer ex Krylov was sequenced and reported for the first time. The length of the entire circular genome was 162,322 bp, and the GC content was 37.4%. There were 133 genes annotated, including 89 known protein-coding genes, 36 tRNAs, and 8 rRNAs. The complete chloroplast genome of P.campanella has consisted of two inverted repeat regions (IRs), a large single-copy region (LSC 82,087 bp), and a small single-copy region (SSC 17,497 bp). The phylogenetic tree was built based on 29 species, using the maximum-likelihood method. The results showed that P.campanella was clustered on the same branch with a variety of Pulsatilla plants. The data reveal the genetic relationship between the selected species and provide information for subsequent plant classification.
A Fluorescent “Turn-On” Clutch Probe for Plasma Cell-Free DNA Identification from Lung Cancer Patients
Early diagnosis of cancer is of paramount significance for the therapeutic intervention of cancers. Although the detection of circulating cell-free DNA (cfDNA) has emerged as a promising, minimally invasive approach for early cancer diagnosis, there is an urgent need to develop a highly sensitive and rapid method to precisely identify plasma cfDNA from clinical samples. Herein, we report a robust fluorescent “turn-on” clutch probe based on non-emissive QDs-Ru complexes to rapidly recognize EGFR gene mutation in plasma cfDNA from lung cancer patients. In this system, the initially quenched emission of QDs is recovered while the red emission of Ru(II) complexes is switched on. This is because the Ru(II) complexes can specifically intercalate into the double-stranded DNA (dsDNA) to form Ru-dsDNA complexes and simultaneously liberate free QDs from the QDs-Ru complexes, which leads to the occurrence of an overlaid red fluorescence. In short, the fluorescent “turn-on” clutch probe offers a specific, rapid, and sensitive paradigm for the recognition of plasma cfDNA biomarkers from clinical samples, providing a convenient and low-cost approach for the early diagnosis of cancer and other gene-mutated diseases.
Determination of Verapamil HCl in Pharmaceutical Preparations by a Fluorescent Nano Probe Based on CdTe/CdS/ZnS Quantum Dots
An analytical technique based on fluorescence quenching of CdTe/CdS/ZnS quantum dots (QDs) was developed to quantify verapamil in commercially available preparations. Various reaction parameters were optimized and the method developed was validated. One way analysis of variance (ANOVA) and post hoc tests at a 5% significance level were performed to justify the significance of the variation in observations. The linear range of the verapamil concentration was 0.25–5 µg/mL while the limit of detection was 20 µg/mL. Recovery and relative standard deviations were not more than ±10% of the actual amount and <5.9%, respectively. Foreign materials, common metal ions and pharmaceutical excipients of dosage forms caused little interference. To verify the application of the analytical method, the quantity of verapamil in commercially available dosage forms was measured. Verapamil content in the tablets and injections was not more than ±10% of the stated amount and it conformed to the specifications of both the British and the United States pharmacopoeias. In the case of statistical analysis, p-value was <0.05 in almost all levels of all parameters except for the optimized level of system. It can be concluded from the results that the designed method is simple, reliable, cost effective, selective, rapid and sensitive enough to be used for quantitative measurement of the verapamil HCl in dosage forms for quality control purposes.
Influence of crystal structure of polymorphic cotton cellulose on the adsorption and photocatalysis properties of biochar-TiO2 composites
Cellulose derived biochar can be used for adsorbent and photocatalyst mainly because of its good compatibility, high hydrophilicity, and the large amount of electron-rich hydroxy groups. Nevertheless, the impact of the crystal structure of cellulose on the absorption and photocatalytic efficiency of biochar-based composites derived from cellulose remains uncertain. Herein, four different types of biochar derived from cotton (cellulose Iβ, II, III, and IV) were individually impregnated with a TiO2 catalyst through hydrothermal and pyrolysis processes, and were analyzed using various characterization methods. Their adsorption behavior and photocatalytic activities were compared using Congo red and methylene blue dye as the model. The analysis and test outcomes suggested that the crystal structure of cotton cellulose impacted the pore structure and TiO2 content of biochar-TiO2 composites to different degrees, resulting in variations in the adsorption and photocatalytic capabilities of biochar-TiO2 composites. In comparison with cellulose II, III and IV, cellulose I derived biochar-TiO2 composite had a large specific surface area, a more stable structure, a high aromatic carbon content, and a high TiO2 loading, resulting in the strong adsorption ability and superior photoactivity to organic dyes. The adsorption and photocatalysis mechanisms were also clarified.
The effect of plant compartment and geographical location on shaping microbiome of Pulsatilla chinensis
The plant-associated microbiome has an effect on plant growth. Pulsatilla chinensis (Bge.) Regel is an important Chinese medicinal plant. Currently, there is little understanding of the P. chinensis-associated microbiome and its diversity and composition. Here, the core microbiome associated with the root, leaf, and rhizospheric soil compartments of P. chinensis from five geographical locations was analyzed by the metagenomics approach. The alpha and beta diversity analysis showed that the microbiome associated with P. chinensis was shaped by the compartment, especially in the bacterial community. The geographical location had little influence on microbial community diversity associated with root and leaf. Hierarchical clustering distinguished the microbial communities of rhizospheric soil based on their geographical location and among the soil properties, pH was showed the more stronger effect on the diversity of rhizospheric soil microbial communities. Proteobacteria was the most dominant bacterial phylum in the root, leaf, and rhizospheric soil. Ascomycota and Basidiomycota were the most dominant fungal phyla in different compartments. Rhizobacter, Anoxybacillus, and IMCC26256 were the most important marker bacterial species for root, leaf, and rhizospheric soil screened by random forest, respectively. The fungal marker species for root, leaf, and rhizospheric soil were not only different across the compartments but also the geographical locations. Functional analysis showed that P. chinensis-associated microbiome had the similar function which had no obvious relationship with geographical location and compartment. The associated microbiome indicated in this study can be used for identifying microorganisms related to the quality and growth of P. chinensis.Key points• Microbiome associated with P. chinensis was shaped by the compartment• Microbiome composition and abundance associated with rhizospheric soil were affected by the geographical location• Compared with fungi, bacterial associated with P. chinensis composition and diversity were more stable in different geographical locations and compartments