Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
167 result(s) for "Songwei, Li"
Sort by:
Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture
Mixed matrix membranes (MMMs) are one of the most promising solutions for energy-efficient gas separation. However, conventional MMM synthesis methods inevitably lead to poor filler–polymer interfacial compatibility, filler agglomeration, and limited loading. Herein, inspired by symbiotic relationships in nature, we designed a universal bottom-up method for in situ nanosized metal organic framework (MOF) assembly within polymer matrices. Consequently, our method eliminating the traditional postsynthetic step significantly enhanced MOF dispersion, interfacial compatibility, and loading to an unprecedented 67.2 wt % in synthesized MMMs. Utilizing experimental techniques and complementary density functional theory (DFT) simulation, we validated that these enhancements synergistically ameliorated CO₂ solubility, which was significantly different from other works where MOF typically promoted gas diffusion. Our approach simultaneously improves CO₂ permeability and selectivity, and superior carbon capture performance is maintained even during long-term tests; the mechanical strength is retained even with ultrahigh MOF loadings. This symbiosis-inspired de novo strategy can potentially pave the way for next-generation MMMs that can fully exploit the unique characteristics of both MOFs and matrices.
Boosting membrane carbon capture via multifaceted polyphenol-mediated soldering
Advances in membrane technologies are significant for mitigating global climate change because of their low cost and easy operation. Although mixed-matrix membranes (MMMs) obtained via the combination of metal-organic frameworks (MOFs) and a polymer matrix are promising for energy-efficient gas separation, the achievement of a desirable match between polymers and MOFs for the development of advanced MMMs is challenging, especially when emerging highly permeable materials such as polymers of intrinsic microporosity (PIMs) are deployed. Here, we report a molecular soldering strategy featuring multifunctional polyphenols in tailored polymer chains, well-designed hollow MOF structures, and defect-free interfaces. The exceptional adhesion nature of polyphenols results in dense packing and visible stiffness of PIM-1 chains with strengthened selectivity. The architecture of the hollow MOFs leads to free mass transfer and substantially improves permeability. These structural advantages act synergistically to break the permeability-selectivity trade-off limit in MMMs and surpass the conventional upper bound. This polyphenol molecular soldering method has been validated for various polymers, providing a universal pathway to prepare advanced MMMs with desirable performance for diverse applications beyond carbon capture. The development of mixed-matrix membranes is especially challenging when highly permeable materials are used. Here the authors present a molecular soldering strategy featuring multifunctional polyphenols in tailored polymer chains, well-designed hollow MOF structures, and defect-free interfaces to break the permeability-selectivity trade-off limit.
In-situ transfer vat photopolymerization for transparent microfluidic device fabrication
While vat photopolymerization has many advantages over soft lithography in fabricating microfluidic devices, including efficiency and shape complexity, it has difficulty achieving well-controlled micrometer-sized (smaller than 100 μm) channels in the layer building direction. The considerable light penetration depth of transparent resin leads to over-curing that inevitably cures the residual resin inside flow channels, causing clogs. In this paper, a 3D printing process — in-situ transfer vat photopolymerization is reported to solve this critical over-curing issue in fabricating microfluidic devices. We demonstrate microchannels with high Z -resolution (within 10 μm level) and high accuracy (within 2 μm level) using a general method with no requirements on liquid resins such as reduced transparency nor leads to a reduced fabrication speed. Compared with all other vat photopolymerization-based techniques specialized for microfluidic channel fabrication, our universal approach is compatible with commonly used 405 nm light sources and commercial photocurable resins. The process has been verified by multifunctional devices, including 3D serpentine microfluidic channels, microfluidic valves, and particle sorting devices. This work solves a critical barrier in 3D printing microfluidic channels using the high-speed vat photopolymerization process and broadens the material options. It also significantly advances vat photopolymerization’s use in applications requiring small gaps with high accuracy in the Z -direction. Despite many advantages of vat photopolymerization in microfluidic device fabrication, well-controlled μm-sized (< 100 μm) channels in the layer building direction remains a challenge. Here, authors present a general high resolution and low-cost 3D printing process that can produce devices within the 10 μm scale.
The role of microRNAs in primary Sjögren’s disease: deciphering regulatory networks and assessing current therapeutic perspectives
Primary Sjögren’s disease (SjD) is a chronic systemic autoimmune disorder whose pathogenesis remains incompletely understood. Current clinical interventions demonstrate limited efficacy, yielding suboptimal therapeutic outcomes. microRNAs (miRNAs)–critical regulators of transcriptional networks–participate in SjD pathogenesis through multifaceted mechanisms. Dysregulated miRNA expression during SjD progression directly influences disease prognosis, establishing miRNAs as promising therapeutic targets. Evidence implicates macrophage polarization, apoptosis dysregulation, Th17/Treg imbalance, T/B lymphocyte dysfunction, glandular impairment, and aberrant type I interferon responses in SjD development. Notably, miR-216a-3p, miR-31-5p, and miR-155-5p modulate key signaling pathways (NF-κB, JAK/STAT, PI3K/AKT) to optimize macrophage polarization, suppress apoptosis, restore Th17/Treg equilibrium, regulate T/B lymphocyte activity, enhance glandular function, normalize type I interferon responses,thereby exerting potent anti-SjD effects. This review synthesizes recent literature to elucidate SjD pathogenesis and miRNA-mediated therapeutic mechanisms, providing a theoretical foundation for novel SjD management strategies.
Surface Modification of Super Arborized Silica for Flexible and Wearable Ultrafast‐Response Strain Sensors with Low Hysteresis
Conductive hydrogels exhibit high potential in the fields of wearable sensors, healthcare monitoring, and e‐skins. However, it remains a huge challenge to integrate high elasticity, low hysteresis, and excellent stretch‐ability in physical crosslinking hydrogels. This study reports the synthesis of polyacrylamide (PAM)‐3‐(trimethoxysilyl) propyl methacrylate‐grafted super arborized silica nanoparticle (TSASN)‐lithium chloride (LiCl) hydrogel sensors with high elasticity, low hysteresis, and excellent electrical conductivity. The introduction of TSASN enhances the mechanical strength and reversible resilience of the PAM‐TSASN‐LiCl hydrogels by chain entanglement and interfacial chemical bonding, and provides stress‐transfer centers for external‐force diffusion. These hydrogels show outstanding mechanical strength (a tensile stress of 80–120 kPa, elongation at break of 900‐1400%, and dissipated energy of 0.8–9.6 kJ m−3), and can withstand multiple mechanical cycles. LiCl addition enables the PAM‐TSASN‐LiCl hydrogels to exhibit excellent electrical properties with an outstanding sensing performance (gauge factor = 4.5), with rapid response (210 ms) within a wide strain‐sensing range (1–800%). These PAM‐TSASN‐LiCl hydrogel sensors can detect various human‐body movements for prolonged durations of time, and generate stable and reliable output signals. The hydrogels fabricated with high stretch‐ability, low hysteresis, and reversible resilience, can be used as flexible wearable sensors. A synthesized surface‐modified super arborized silica nanoparticles (TSASNs)‐polyacrylamide (PAM)‐lithium chloride (LiCl) ultrafast response strain sensor with high fracture toughness and low hysteresis is prepared. The hydrogel sensor can rapidly and stably detect different types of human movement. The work contributes immensely to the field of flexible wearable sensors.
Effects of Gaze Fixation on the Performance of a Motor Imagery-Based Brain-Computer Interface
Motor imagery-based brain-computer interfaces (BCIs) have been studied without controlling subjects' gaze fixation position previously. The effect of gaze fixation and covert attention on the behavioral performance of BCI is still unknown. This study designed a gaze fixation controlled experiment. Subjects were required to conduct a secondary task of gaze fixation when performing the primary task of motor imagination. Subjects' performance was analyzed according to the relationship between motor imagery target and the gaze fixation position, resulting in three BCI control conditions, i.e., congruent, incongruent, and center cross trials. A group of fourteen subjects was recruited. The average group performances of three different conditions did not show statistically significant differences in terms of BCI control accuracy, feedback duration, and trajectory length. Further analysis of gaze shift response time revealed a significantly shorter response time for congruent trials compared to incongruent trials. Meanwhile, the parietal occipital cortex also showed active neural activities for congruent and incongruent trials, and this was revealed by a contrast analysis of R-square values and lateralization index. However, the lateralization index computed from the parietal and occipital areas was not correlated with the BCI behavioral performance. Subjects' BCI behavioral performance was not affected by the position of gaze fixation and covert attention. This indicated that motor imagery-based BCI could be used freely in robotic arm control without sacrificing performance.
High expression of PARD3 predicts poor prognosis in hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is one of the most commonly cancers with poor prognosis and drug response. Identifying accurate therapeutic targets would facilitate precision treatment and prolong survival for HCC. In this study, we analyzed liver hepatocellular carcinoma (LIHC) RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA), and identified PARD3 as one of the most significantly differentially expressed genes (DEGs). Then, we investigated the relationship between PARD3 and outcomes of HCC, and assessed predictive capacity. Moreover, we performed functional enrichment and immune infiltration analysis to evaluate functional networks related to PARD3 in HCC and explore its role in tumor immunity. PARD3 expression levels in 371 HCC tissues were dramatically higher than those in 50 paired adjacent liver tissues ( p  < 0.001). High PARD3 expression was associated with poor clinicopathologic feathers, such as advanced pathologic stage ( p  = 0.002), vascular invasion ( p  = 0.012) and TP53 mutation ( p  = 0.009). Elevated PARD3 expression also correlated with lower overall survival (OS, HR = 2.08, 95% CI = 1.45–2.98, p  < 0.001) and disease-specific survival (DSS, HR = 2.00, 95% CI = 1.27–3.16, p  = 0.003). 242 up-regulated and 71 down-regulated genes showed significant association with PARD3 expression, which were involved in genomic instability, response to metal ions, and metabolisms. PARD3 is involved in diverse immune infiltration levels in HCC, especially negatively related to dendritic cells (DCs), cytotoxic cells, and plasmacytoid dendritic cells (pDCs). Altogether, PARD3 could be a potential prognostic biomarker and therapeutic target of HCC.
Enhancement of Nicotiana tabacum Resistance Against Dehydration-Induced Leaf Senescence via Metabolite/Phytohormone-Gene Regulatory Networks Modulated by Melatonin
Melatonin (MEL) is a pleiotropic agent with crucial functions reported in a variety of stress responses and developmental processes. Although MEL involvement in plant defense against natural leaf senescence has been widely reported, the precise regulatory mechanisms by which it delays stress-induced senescence remain unclear. In this study, we found that foliar spraying of melatonin markedly ameliorated dehydration-induced leaf senescence in Nicotiana tabacum , accompanied by attenuated oxidative damage, expression of senescence-related genes, and reduced endogenous ABA production. Metabolite profiling indicated that melatonin-treated plants accumulated higher concentrations of sugars, sugar alcohol, and organic acids, but fewer concentrations of amino acids in the leaves, than untreated plants after exposure to dehydration. Gene expression analysis revealed that the delayed senescence of stressed plants achieved by melatonin treatment might be partially ascribed to the upregulated expression of genes involved in ROS scavenging, chlorophyll biosynthesis, photosynthesis, and carbon/nitrogen balances, and downregulated expression of senescence-associated genes. Furthermore, hormone responses showed an extensively modulated expression, complemented by carotenoid biosynthesis regulation to achieve growth acceleration in melatonin-treated plants upon exposure to dehydration stress. These findings may provide more comprehensive insights into the role of melatonin in alleviating leaf senescence and enhancing dehydration resistance.
Exploring the effects of head movements and accompanying gaze fixation switch on steady-state visual evoked potential
In a realistic steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) application like driving a car or controlling a quadrotor, observing the surrounding environment while simultaneously gazing at the stimulus is necessary. This kind of application inevitably could cause head movements and variation of the accompanying gaze fixation point, which might affect the SSVEP and BCI's performance. However, few papers studied the effects of head movements and gaze fixation switch on SSVEP response, and the corresponding BCI performance. This study aimed to explore these effects by designing a new ball tracking paradigm in a virtual reality (VR) environment with two different moving tasks, i.e., the following and free moving tasks, and three moving patterns, pitch, yaw, and static. Sixteen subjects were recruited to conduct a BCI VR experiment. The offline data analysis showed that head moving patterns (F(2, 30) = 9.369, p = 0.001, effect size = 0.384) resulted in significantly different BCI decoding performance but the moving tasks had no effect on the results (F(1, 15) = 3.484, p = 0.082, effect size = 0.188). Besides, the CCA and FBCCA accuracy were better than the PSDA and MEC methods in all of the conditions. These results implied that head movement could significantly affect the SSVEP performance but it was possible to switch gaze fixation to interact with the surroundings in a realistic BCI application.
Two New Diterpenoids Formed by Transannular Diels–Alder Cycloaddition from the Soft Coral Sarcophyton tortuosum, and Their Antibacterial and PPAR-β Agonist Activities
Two new cembrane-derived tricyclic diterpenes belonging to the sarcophytin family, namely 4a-hydroxy-chatancin (1) and sarcotoroid (2), together with two known related ones (3 and 4), were isolated from the soft coral Sarcophyton tortuosum collected off Ximao Island in the South China Sea. The structures of the new compounds were elucidated by extensive spectroscopic analysis, a quantum mechanical nuclear magnetic resonance (QM-NMR) method, a time-dependent density functional theory electronic circular dichroism (TDDFT-ECD) calculation, X-ray diffraction analysis, and comparison with the reported data in the literature. A plausible biosynthetic pathway of compounds 1–4 was proposed, involving undergoing a transannular Diels–Alder cycloaddition. In the bioassay, the new compound 1 displayed significant inhibitory activities against the fish pathogens Streptococcus parauberis KSP28, oxytetracycline-resistant Streptococcus parauberis SPOF3K, and Photobacterium damselae FP2244, with MIC values of 9.1, 9.1, and 18.2 μg/mL, respectively. Furthermore, by conducting a luciferase reporter assay on rat liver Ac2F cells, compounds 1, 3, and 4 were evaluated for peroxisome proliferator-activated receptor (PPAR) transcriptional activity, and compound 3 showed selective PPAR-β agonist activity at a concentration of 10 μΜ.