Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
998
result(s) for
"Sousa, Teresa"
Sort by:
Multimodal assessment of the spatial correspondence between fNIRS and fMRI hemodynamic responses in motor tasks
by
Direito, Bruno
,
Castelo-Branco, Miguel
,
Pereira, João
in
631/378/1697
,
631/443/376
,
Brain Mapping - methods
2023
Functional near-infrared spectroscopy (fNIRS) provides a cost-efficient and portable alternative to functional magnetic resonance imaging (fMRI) for assessing cortical activity changes based on hemodynamic signals. The spatial and temporal underpinnings of the fMRI blood-oxygen-level-dependent (BOLD) signal and corresponding fNIRS concentration of oxygenated (HbO), deoxygenated (HbR), and total hemoglobin (HbT) measurements are still not completely clear. We aim to analyze the spatial correspondence between these hemodynamic signals, in motor-network regions. To this end, we acquired asynchronous fMRI and fNIRS recordings from 9 healthy participants while performing motor imagery and execution. Using this multimodal approach, we investigated the ability to identify motor-related activation clusters in fMRI data using subject-specific fNIRS-based cortical signals as predictors of interest. Group-level activation was found in fMRI data modeled from corresponding fNIRS measurements, with significant peak activation found overlapping the individually-defined primary and premotor motor cortices, for all chromophores. No statistically significant differences were observed in multimodal spatial correspondence between HbO, HbR, and HbT, for both tasks. This suggests the possibility of translating neuronal information from fMRI into an fNIRS motor-coverage setup with high spatial correspondence using both oxy and deoxyhemoglobin data, with the inherent benefits of translating fMRI paradigms to fNIRS in cognitive and clinical neuroscience.
Journal Article
Label-free detection of hypoxia-induced extracellular vesicle secretion from MCF-7 cells
2018
Nanoscale extracellular vesicles (EVs) including exosomes (50–150 nm membrane particles) have emerged as promising cancer biomarkers due to the carried genetic information about the parental cells. However the sensitive detection of these vesicles remains a challenge. Here we present a label-free electrochemical sensor to measure the EVs secretion levels of hypoxic and normoxic MCF-7 cells. The sensor design includes two consecutive steps; i) Au electrode surface functionalization for anti-CD81 Antibody and ii) EVs capture. The label-free detection of EVs was done via Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). The working linear range for the sensor was 10
2
–10
9
EVs/ml with an LOD 77 EVs/mL and 379 EVs/ml for EIS and DPV based detection. A blood-abundant protein, RhD was used for the selectivity test. In order to assess the performance of the biosensor, the level of EVs secretion by the human breast cancer MCF-7 cell line was compared with enzyme-linked immunosorbent assays (ELISA) and Nanoparticle Tracking Analysis (NTA). Designed label-free electrochemical sensors utilized for quantification of EVs secretion enhancement due to CoCl
2
-induced hypoxia and 1.23 fold increase with respect to normoxic conditions was found.
Journal Article
A human cortical adaptive mutual inhibition circuit underlying competition for perceptual decision and repetition suppression reversal
by
Sayal, Alexandre
,
Castelo-Branco, Miguel
,
Duarte, João V.
in
Adaptation
,
Cross inhibition
,
fMRI
2024
•fMRI-based adaptation, which has been developed as a tool to identify functional selectivity in the human brain, can also reveal the influence of neighboring neuronal populations.•Our data reveals neural evidence for a disinhibition effect as a result of the adaptation of adjacent populations, which is in line with the adapting reciprocal inhibition model.•Reciprocal inhibition can, thus, be tracked in the human brain using fMRI, adding to the understanding of human multistable perception and the neural coding of visual information.•Our results also provide a mechanism for reversal of repetition suppression effects.
A model based on inhibitory coupling has been proposed to explain perceptual oscillations. This 'adapting reciprocal inhibition' model postulates that it is the strength of inhibitory coupling that determines the fate of competition between percepts. Here, we used an fMRI-based adaptation technique to reveal the influence of neighboring neuronal populations, such as reciprocal inhibition, in motion-selective hMT+/V5. If reciprocal inhibition exists in this region, the following predictions should hold: 1. stimulus-driven response would not simply decrease, as predicted by simple repetition-suppression of neuronal populations, but instead, increase due to the activity from adjacent populations; 2. perceptual decision involving competing representations, should reflect decreased reciprocal inhibition by adaptation; 3. neural activity for the competing percept should also later on increase upon adaptation. Our results confirm these three predictions, showing that a model of perceptual decision based on adapting reciprocal inhibition holds true. Finally, they also show that the net effect of the well-known repetition suppression phenomenon can be reversed by this mechanism.
Journal Article
The pro-resolving lipid mediator Maresin 1 ameliorates pain responses and neuroinflammation in the spared nerve injury-induced neuropathic pain: A study in male and female mice
by
Teixeira-Santos, Luísa
,
Albino-Teixeira, António
,
Martins, Sandra
in
Analgesics
,
Animal protection
,
Animal welfare
2023
Specialized pro-resolving mediators (SPMs) have recently emerged as promising therapeutic approaches for neuropathic pain (NP). We evaluated the effects of oral treatment with the SPM Maresin 1 (MaR1) on behavioral pain responses and spinal neuroinflammation in male and female C57BL/6J mice with spared nerve injury (SNI)-induced NP. MaR1, or vehicle, was administered once daily, on post-surgical days 3 to 5, by voluntary oral intake. Sensory-discriminative and affective-motivational components of pain were evaluated with von Frey and place escape/avoidance paradigm (PEAP) tests, respectively. Spinal microglial and astrocytic activation were assessed by immunofluorescence, and the spinal concentration of cytokines IL-1β, IL-6, IL-10, and macrophage colony-stimulating factor (M-CSF) were evaluated by multiplex immunoassay. MaR1 treatment reduced SNI-induced mechanical hypersensitivity on days 7 and 11 in both male and female mice, and appeared to ameliorate the affective component of pain in males on day 11. No definitive conclusions could be drawn about the impact of MaR1 on the affective-motivational aspects of pain in female mice, since repeated suprathreshold mechanical stimulation of the affected paw in the dark compartment did not increase the preference of vehicle-treated SNI females for the light side, during the PEAP test session (a fundamental assumption for PAEP’s validity). MaR1 treatment also reduced ipsilateral spinal microglial and astrocytic activation in both sexes and marginally increased M-CSF in males, while not affecting cytokines IL-1β, IL-6 and IL-10 in either sex. In summary, our study has shown that oral treatment with MaR1 (i) produces antinociception even in an already installed peripheral NP mouse model, and (ii) this antinociception may extend for several days beyond the treatment time-frame. These therapeutic effects are associated with attenuated microglial and astrocytic activation in both sexes, and possibly involve modulation of M-CSF action in males.
Journal Article
A role for preparatory midfrontal theta in autism as revealed by a high executive load brain–computer interface reverse spelling task
2025
Midfrontal theta oscillations have been linked to executive function, yet their role in autism—where this function is often compromised—remains unclear. We hypothesized that preparatory increases in theta power may help normalize performance in autism. To test this, we used a challenging interactive executive function task designed to impose a high working memory load and require constant error monitoring. An electroencephalogram (EEG)-based brain–computer interface (BCI) was used to maximize cognitive load and engagement. Neural activity from autistic and non-autistic adults was compared while participants were asked to mentally reverse pseudowords (engaging working memory) and write them using the BCI, which provided real-time performance feedback (maximizing error monitoring). The study focused on theta power modulation during the preparatory (pre-response) and feedback (post-response) periods but also explored the role of posterior alpha oscillations. Results showed similar task performance between groups, but distinct recruitment of brain resources, particularly during the preparatory period. The finding of an increased preparatory theta in autism favors the hypothesis of compensatory recruitment of cognitive control and attentional mechanisms to achieve accurate results.
Journal Article
Music in the loop: a systematic review of current neurofeedback methodologies using music
2025
Music, a universal element in human societies, possesses a profound ability to evoke emotions and influence mood. This systematic review explores the utilization of music to allow self-control of brain activity and its implications in clinical neuroscience. Focusing on music-based neurofeedback studies, it explores methodological aspects and findings to propose future directions. Three key questions are addressed: the rationale behind using music as a stimulus, its integration into the feedback loop, and the outcomes of such interventions. While studies emphasize the emotional link between music and brain activity, mechanistic explanations are lacking. Additionally, there is no consensus on the imaging or behavioral measures of neurofeedback success. The review suggests considering whole-brain neural correlates of music stimuli and their interaction with target brain networks and reward mechanisms when designing music-neurofeedback studies. Ultimately, this review aims to serve as a valuable resource for researchers, facilitating a deeper understanding of music's role in neurofeedback and guiding future investigations.
Journal Article
Identification of competing neural mechanisms underlying positive and negative perceptual hysteresis in the human visual system
by
Sayal, Alexandre
,
Castelo-Branco, Miguel
,
Duarte, João V.
in
Adaptation
,
Adaptation, Physiological - physiology
,
Adult
2020
Hysteresis is a well-known phenomenon in physics that relates changes in a system with its prior history. It is also part of human visual experience (perceptual hysteresis), and two different neural mechanisms might explain it: persistence (a cause of positive hysteresis), which forces to keep a current percept for longer, and adaptation (a cause of negative hysteresis), which in turn favors the switch to a competing percept early on. In this study, we explore the neural correlates underlying these mechanisms and the hypothesis of their competitive balance, by combining behavioral assessment with fMRI. We used machine learning on the behavioral data to distinguish between positive and negative hysteresis, and discovered a neural correlate of persistence at a core region of the ventral attention network, the anterior insula. Our results add to the understanding of perceptual multistability and reveal a possible mechanistic explanation for the regulation of different forms of perceptual hysteresis.
•Two mechanisms may help explain the hysteresis phenomenon in human visual experience: adaptation and persistence.•We found evidence for a continuous competition between these perceptual history mechanisms, together with a stronger involvement of the anterior insula when persistence dominated.•Our results support the hypothesis of differential brain network recruitment for the two mechanisms and provide further insight into the underlying causes of hysteresis in multistable perception.
Journal Article
Neural inhibition as implemented by an actor-critic model involves the human dorsal striatum and ventral tegmental area
2024
Inhibition is implicated across virtually all human experiences. As a trade-off of being very efficient, this executive function is also prone to many errors. Rodent and computational studies show that midbrain regions play crucial roles during errors by sending dopaminergic learning signals to the basal ganglia for behavioural adjustment. However, the parallels between animal and human neural anatomy and function are not determined. We scanned human adults while they performed an fMRI inhibitory task requiring trial-and-error learning. Guided by an actor-critic model, our results implicate the dorsal striatum and the ventral tegmental area as the actor and the critic, respectively. Using a multilevel and dimensional approach, we also demonstrate a link between midbrain and striatum circuit activity, inhibitory performance, and self-reported autistic and obsessive–compulsive subclinical traits.
Journal Article
Assessing MR-compatibility of somatosensory stimulation devices: A systematic review on testing methodologies
by
Direito, Bruno
,
Sayal, Alexandre
,
Castelo-Branco, Miguel
in
compatibility
,
functional MRI (fMRI)
,
magnetic resonance imaging (MRI)
2023
Functional magnetic resonance imaging (fMRI) has been extensively used as a tool to map the brain processes related to somatosensory stimulation. This mapping includes the localization of task-related brain activation and the characterization of brain activity dynamics and neural circuitries related to the processing of somatosensory information. However, the magnetic resonance (MR) environment presents unique challenges regarding participant and equipment safety and compatibility. This study aims to systematically review and analyze the state-of-the-art methodologies to assess the safety and compatibility of somatosensory stimulation devices in the MR environment. A literature search, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement guidelines, was performed in PubMed, Scopus, and Web of Science to find original research on the development and testing of devices for somatosensory stimulation in the MR environment. Nineteen records that complied with the inclusion and eligibility criteria were considered. The findings are discussed in the context of the existing international standards available for the safety and compatibility assessment of devices intended to be used in the MR environment. In sum, the results provided evidence for a lack of uniformity in the applied testing methodologies, as well as an in-depth presentation of the testing methodologies and results. Lastly, we suggest an assessment methodology (safety, compatibility, performance, and user acceptability) that can be applied to devices intended to be used in the MR environment.
Journal Article
Corrigendum: Assessing MR-compatibility of somatosensory stimulation devices: a systematic review on testing methodologies
by
Direito, Bruno
,
Sayal, Alexandre
,
Castelo-Branco, Miguel
in
compatibility
,
functional MRI (fMRI)
,
magnetic resonance imaging (MRI)
2024
[This corrects the article DOI: 10.3389/fnins.2023.1071749.].
Journal Article