Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Southall, Emily J."
Sort by:
Foraging success of biological Levy flights recorded in situ
It is an open question how animals find food in dynamic natural environments where they possess little or no knowledge of where resources are located. Foraging theory predicts that in environments with sparsely distributed target resources, where forager knowledge about resources' locations is incomplete, Lévy flight movements optimize the success of random searches. However, the putative success of Lévy foraging has been demonstrated only in model simulations. Here, we use high-temporal-resolution Global Positioning System (GPS) tracking of wandering (Diomedea exulans) and black-browed albatrosses (Thalassarche melanophrys) with simultaneous recording of prey captures, to show that both species exhibit Lévy and Brownian movement patterns. We find that total prey masses captured by wandering albatrosses during Lévy movements exceed daily energy requirements by nearly fourfold, and approached yields by Brownian movements in other habitats. These results, together with our reanalysis of previously published albatross data, overturn the notion that albatrosses do not exhibit Lévy patterns during foraging, and demonstrate that Lévy flights of predators in dynamic natural environments present a beneficial alternative strategy to simple, spatially intensive behaviors. Our findings add support to the possibility that biological Lévy flight may have naturally evolved as a search strategy in response to sparse resources and scant information.
Hierarchical random walks in trace fossils and the origin of optimal search behavior
Efficient searching is crucial for timely location of food and other resources. Recent studies show that diverse living animals use a theoretically optimal scale-free random search for sparse resources known as a Lévy walk, but little is known of the origins and evolution of foraging behavior and the search strategies of extinct organisms. Here, using simulations of self-avoiding trace fossil trails, we show that randomly introduced strophotaxis (U-turns)—initiated by obstructions such as self-trail avoidance or innate cueing—leads to random looping patterns with clustering across increasing scales that is consistent with the presence of Lévy walks. This predicts that optimal Lévy searches may emerge from simple behaviors observed in fossil trails. We then analyzed fossilized trails of benthic marine organisms by using a novel path analysis technique and find the first evidence, to our knowledge, of Lévy-like search strategies in extinct animals. Our results show that simple search behaviors of extinct animals in heterogeneous environments give rise to hierarchically nested Brownian walk clusters that converge to optimal Lévy patterns. Primary productivity collapse and large-scale food scarcity characterizing mass extinctions evident in the fossil record may have triggered adaptation of optimal Lévy-like searches. The findings suggest that Lévy-like behavior has been used by foragers since at least the Eocene but may have a more ancient origin, which might explain recent widespread observations of such patterns among modern taxa.
Measuring deoxygenation effects on marine predators: A new animal‐attached archival tag recording in situ dissolved oxygen, temperature, fine‐scale movements and behaviour
Global climate‐driven ocean warming has decreased dissolved oxygen (DO) levels (ocean deoxygenation) leading to expansions of hypoxic zones, which will affect the movements, behaviour, physiology and distributions of marine animals. However, the precise responses of animals to low DO remains poorly understood because movements and activity levels are seldom recorded alongside instantaneous DO in situ. We describe a new animal‐attached (dissolved oxygen measuring, DOME) archival tag with an optical oxygen sensor for recording DO, in addition to sensors for temperature and depth, a triaxial accelerometer for fine‐scale movements and activity, and a GPS for tag recovery. All sensors were integrated on a single electronic board. Calibration tests demonstrated small mean difference between DOME tag and factory‐calibrated DO sensors (mean relative error of 5%). No temporal drift occurred over a test period three times longer than the maximum deployment time. Deployments on four blue sharks (Prionace glauca) in the central North Atlantic Ocean showed regular vertical oscillations from the surface to a maximum of 404 m. Profiles from diving sharks recorded DO concentrations ranging from 217 to 272 μmol L−1, temperatures between 13°C and 23°C, and identified an oxygen maximum at ~45 m depth, all of which were consistent with ship‐based measurements. Interestingly, the percentage of time sharks spent burst swimming was greater in the top 85 m compared to deeper depths, potentially because of higher prey availability in the surface layer. The DOME tag described blue shark fine‐scale movements and activity levels in relation to accurately measured in situ DO and temperature, with the potential to offer new insights of animal performance in low oxygen environments. Development of a tag with physico‐chemical and movement sensors on a single electronic board is a first step towards satellite relay of these data over broader spatiotemporal scales (months over thousands of kilometres) to determine direct and indirect responses of marine animals to heatwave and deoxygenation events.
Hunt Warm, Rest Cool: Bioenergetic Strategy Underlying Diel Vertical Migration of a Benthic Shark
1. Diel vertical migration (DVM) is a widespread phenomenon among marine and freshwater organisms and many studies with various taxa have sought to understand its adaptive significance. Among crustacean zooplankton and juveniles of some fish species DVM is accepted widely as an antipredator behaviour, but little is known about its adaptive value for relatively large-bodied, adult predatory fish such as sharks. Moreover, the majority of studies have focused on pelagic forms, which raises the question of whether DVM occurs in bottom-living predators. 2. To investigate DVM in benthic predatory fish in the marine environment and to determine why it might occur we tracked movements of adult male dogfish (Scyliorhinus canicula) by short- and long-term acoustic and archival telemetry. Movement studies were complemented with measurements of prey abundance and availability and thermal habitat within home ranges. A thermal choice experiment and energy budget modelling was used to investigate trade-offs between foraging and thermal habitat selection. 3. Male dogfish undertook normal DVM (nocturnal ascent) within relatively small home ranges (∼100 × 100 m) comprising along-bottom movements up submarine slopes from deeper, colder waters occupied during the day into warmer, shallow prey-rich areas above the thermocline at night. Few daytime vertical movements occurred. Levels of activity were higher during the night above the thermocline compared to below it during the day indicating they foraged in warm water and rested in colder depths. 4. A thermal choice experiment using environmentally realistic temperatures supported the field observation that dogfish positively avoided warmer water even when it was associated with greater food availability. Males in laboratory aquaria moved into warm water from a cooler refuge only to obtain food, and after food consumption they preferred to rest and digest in cooler water. 5. Modelling of energy budgets under different realistic thermal-choice scenarios indicated dogfish adopting a 'hunt warm - rest cool' strategy could lower daily energy costs by just over 4%. Our results provide the first clear evidence that are consistent with the hypothesis that a benthic marine-fish predator utilizes DVM as an energy conservation strategy that increases bioenergetic efficiency.
Encounter success of free-ranging marine predator movements across a dynamic prey landscape
Movements of wide-ranging top predators can now be studied effectively using satellite and archival telemetry. However, the motivations underlying movements remain difficult to determine because trajectories are seldom related to key biological gradients, such as changing prey distributions. Here, we use a dynamic prey landscape of zooplankton biomass in the north-east Atlantic Ocean to examine active habitat selection in the plankton-feeding basking shark Cetorhinus maximus. The relative success of shark searches across this landscape was examined by comparing prey biomass encountered by sharks with encounters by random-walk simulations of 'model' sharks. Movements of transmitter-tagged sharks monitored for 964 days (16 754 km estimated minimum distance) were concentrated on the European continental shelf in areas characterized by high seasonal productivity and complex prey distributions. We show movements by adult and sub-adult sharks yielded consistently higher prey encounter rates than 90% of random-walk simulations. Behavioural patterns were consistent with basking sharks using search tactics structured across multiple scales to exploit the richest prey areas available in preferred habitats. Simple behavioural rules based on learned responses to previously encountered prey distributions may explain the high performances. This study highlights how dynamic prey landscapes enable active habitat selection in large predators to be investigated from a trophic perspective, an approach that may inform conservation by identifying critical habitat of vulnerable species.
Habitat-Specific Normal and Reverse Diel Vertical Migration in the Plankton-Feeding Basking Shark
1. Megaplanktivores such as filter-feeding sharks and baleen whales are at the apex of a short food chain (phytoplankton-zooplankton-vertebrate) and are sensitive indicators of sea-surface plankton availability. Even though they spend the majority of their time below the surface it is still not known how most of these species utilize vertical habitat and adapt to short-term changes in food availability. 2. A key factor likely to control vertical habitat selection by planktivorous sharks is the diel vertical migration (DVM) of zooplankton; however, no study has determined whether specific ocean-habitat type influences their behavioural strategy. Based on the first high-resolution dive data collected for a plankton-feeding fish species we show that DVM patterns of the basking shark Cetorhinus maximus reflect habitat type and zooplankton behaviour. 3. In deep, well-stratified waters sharks exhibited normal DVM (dusk ascent-dawn descent) by tracking migrating sound-scattering layers characterized by Calanus and euphausiids. Sharks occupying shallow, inner-shelf areas near thermal fronts conducted reverse DVM (dusk descent-dawn ascent) possibly due to zooplankton predator-prey interactions that resulted in reverse DVM of Calanus. 4. These opposite DVM patterns resulted in the probability of daytime-surface sighting differing between these habitats by as much as two orders of magnitude. Ship-borne surveys undertaken at the same time as trackings reflected these behavioural differences. 5. The tendency of basking sharks to feed or rest for long periods at the surface has made them vulnerable to harpoon fisheries. Ship-borne and aerial surveys also use surface occurrence to assess distribution and abundance for conservation purposes. Our study indicates that without bias reduction for habitat-specific DVM patterns, current surveys could under- or overestimate shark abundance by at least 10-fold.
Regional climatic warming drives long–term community changes of British marine fish
Climatic change has been implicated as the cause of abundance fluctuations in marine fish populations worldwide, but the effects on whole communities are poorly understood. We examined the effects of regional climatic change on two fish assemblages using independent datasets from inshore marine (English Channel, 1913-2002) and estuarine environments (Bristol Channel, 1981-2001). Our results show that climatic change has had dramatic effects on community composition. Each assemblage contained a subset of dominant species whose abundances were strongly linked to annual mean sea-surface temperature. Species' latitudinal ranges were not good predictors of species-level responses, however, and the same species did not show congruent trends between sites. This suggests that within a region, populations of the same species may respond differently to climatic change, possibly owing to additional local environmental determinants, interspecific ecological interactions and dispersal capacity. This will make species-level responses difficult to predict within geographically differentiated communities.
Convergent Foraging Tactics of Marine Predators with Different Feeding Strategies across Heterogeneous Ocean Environments
Advances in satellite tracking and archival technologies now allow marine animal movements and behaviour to be recorded at much finer temporal scales, providing a more detailed ecological understanding that can potentially be applicable to conservation and management strategies. Pelagic sharks are commercially exploited worldwide with current concerns that populations are declining, however, how pelagic sharks use exploited environments remains enigmatic for most species. Here we analysed high resolution dive depth profiles of two pelagic shark species with contrasting feeding strategies to investigate movement patterns in relation to environmental heterogeneity. Seven macropredatory blue (Prionace glauca) and six plankton-feeding basking (Cetorhinus maximus) sharks were tagged with pop-off satellite-linked archival tags in the North Atlantic Ocean to examine habitat use and investigate the function of dives. We grouped dives of both species into five major categories based on the two dimensional dive profile shape. Each dive-shape class presented similar frequency and characteristics among the two species with U- and V-shaped dives predominating. We tested the spatial occurrence of different U- and V-shape dive parameters in response to environmental field gradients and found that mean depth and mean depth range decreased with increasing levels of primary productivity (chlorophyll ‘a’), whereas ascent velocities displayed a positive correlation. The results suggest that a planktivore and a macropredator responded behaviourally in similar ways to encountered environmental heterogeneity. This indicates fine-scale dive profiles of shark species with different feeding strategies can be used to identify key marine habitats, such as foraging areas where sharks aggregate and which may represent target areas for conservation.
Scaling laws of marine predator search behaviour
A Lévy walk on the wild side Little is known about what controls predator movement patterns, and hence their distribution in the natural environment because in most cases they are logistically difficult to study. This lack of knowledge hinders progress in making realistic predictions about how these important species will respond to environmental change. Now an electronic tagging study of over a million movement displacements of individual marine predators — including basking sharks, sea turtles and penguins — has provided the data needed to analyse predator search patterns. What emerges is in line with the 'Lévy-walk' model, the predicted optimal strategy for a predator with little prior knowledge of prey distribution. Simulations suggest that the foraging predators adopt a random walk characterized by many short steps and rare long steps, maximizing encounter rates in natural-like prey fields. Many free-ranging predators have to make foraging decisions with little, if any, knowledge of present resource distribution and availability 1 . The optimal search strategy they should use to maximize encounter rates with prey in heterogeneous natural environments remains a largely unresolved issue in ecology 1 , 2 , 3 . Lévy walks 4 are specialized random walks giving rise to fractal movement trajectories that may represent an optimal solution for searching complex landscapes 5 . However, the adaptive significance of this putative strategy in response to natural prey distributions remains untested 6 , 7 . Here we analyse over a million movement displacements recorded from animal-attached electronic tags to show that diverse marine predators—sharks, bony fishes, sea turtles and penguins—exhibit Lévy-walk-like behaviour close to a theoretical optimum 2 . Prey density distributions also display Lévy-like fractal patterns, suggesting response movements by predators to prey distributions. Simulations show that predators have higher encounter rates when adopting Lévy-type foraging in natural-like prey fields compared with purely random landscapes. This is consistent with the hypothesis that observed search patterns are adapted to observed statistical patterns of the landscape. This may explain why Lévy-like behaviour seems to be widespread among diverse organisms 3 , from microbes 8 to humans 9 , as a ‘rule’ that evolved in response to patchy resource distributions.
Environmental context explains Lévy and Brownian movement patterns of marine predators
Patterns of predation What is the best way to find food in a habitat where food sources are patchy and unpredictable? Theory suggests that organisms hunting for food should adopt a Lévy-flight search strategy, a variant of a 'random walk' in which short exploratory hops are interspersed with occasional longer trips. But when predators find themselves amid abundant food, simple erratic or 'Brownian' movement should suffice. Clear evidence for true Lévy-flight-style foraging in wild animals has proved elusive, but an analysis of a large data set of 14 species of marine predators, including sharks, marlin and tuna, now proves the point. Electronic tagging reveals that the fish use Lévy behaviour when swimming in less productive waters where prey is sparse and Brownian movement in productive habitats. What is the best way for predators to find food when prey is sparse and distributed unpredictably? Theory predicts that in such circumstances predators should adopt a Lé-flight strategy, in which short exploratory hops are occasionally interspersed with longer trips. When prey is abundant, simple Brownian motion should suffice. Now, analysis of a large data set of marine predators establishes that animals do indeed adopt Lévy-flight foraging when prey is sparse, and Brownian episodes when prey is abundant. An optimal search theory, the so-called Lévy-flight foraging hypothesis 1 , predicts that predators should adopt search strategies known as Lévy flights where prey is sparse and distributed unpredictably, but that Brownian movement is sufficiently efficient for locating abundant prey 2 , 3 , 4 . Empirical studies have generated controversy because the accuracy of statistical methods that have been used to identify Lévy behaviour has recently been questioned 5 , 6 . Consequently, whether foragers exhibit Lévy flights in the wild remains unclear. Crucially, moreover, it has not been tested whether observed movement patterns across natural landscapes having different expected resource distributions conform to the theory’s central predictions. Here we use maximum-likelihood methods to test for Lévy patterns in relation to environmental gradients in the largest animal movement data set assembled for this purpose. Strong support was found for Lévy search patterns across 14 species of open-ocean predatory fish (sharks, tuna, billfish and ocean sunfish), with some individuals switching between Lévy and Brownian movement as they traversed different habitat types. We tested the spatial occurrence of these two principal patterns and found Lévy behaviour to be associated with less productive waters (sparser prey) and Brownian movements to be associated with productive shelf or convergence-front habitats (abundant prey). These results are consistent with the Lévy-flight foraging hypothesis 1 , 7 , supporting the contention 8 , 9 that organism search strategies naturally evolved in such a way that they exploit optimal Lévy patterns.