Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
17
result(s) for
"Southwest University [Chongqing]"
Sort by:
AI-Powered Digital Transformation of Government Human Resource Management: A Bibliometric and Systematic Literature Review
by
Roland Szabó Department of Corporate Leadership and Marketing, Széchenyi István University, Egyetem tér 1., 9026 Győr, Hungary
,
Bin Wang College of State Governance, Southwest University, Chongqing 400715, China
,
Aweewan Panyagometh International College, National Institute of Development Administration, Bangkok 10240, Thailand
in
Adoption of innovations
,
Artificial intelligence
,
Bibliometrics
2025
Recent developments in modern artificial intelligence (AI) have driven profound changes in public sector human resource management systems, offering remarkable opportunities alongside intricate challenges. Governments across the globe are progressively integrating AI tools to modernize HR operations, enhance workforce planning, and respond to evolving socio-economic demands. This research utilizes the PRISMA framework for systematic literature review to explore the role of AI in transforming government HR practices. By analyzing 47 peer-reviewed articles published from 2019 to 2023, the study identifies five central themes: ethical and governance models for AI in public administration; AI’s influence on HR functions and organizational behavior; implementation barriers and potential benefits; AI applications in digital governance and policy formulation; and innovations in HR technologies driven by big data. The findings highlight critical success factors such as strong data infrastructure, structured employee training initiatives, and well-defined ethical standards. Key challenges identified include concerns around data privacy, biased algorithms, workforce adaptation, and wider societal implications like employment shifts and changing competency needs. The study underscores the importance of: (1) adaptive regulatory frameworks that support innovation while safeguarding public interest; (2) robust data governance strategies to manage confidentiality and cybersecurity risks; (3) tailored training programs aimed at improving AI understanding among government staff; and (4) collaborative efforts across sectors to promote ethical AI adoption and mitigate socio-economic disruptions.
Journal Article
The CC‐NB‐LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19
by
Southwest University [Chongqing]
,
Zhang, Changwei
,
Liu, Mingming
in
Amino acids
,
Apoptosis
,
Binding sites
2021
Nucleotide-binding site–leucine-rich repeat (NB-LRR) resistance proteins are critical for plantresistance to pathogens; however, their mechanism of activation and signal transduction is stillnot well understood. We identified a mutation in an as yet uncharacterized rice coiled-coil (CC)-NB-LRR, Oryza sativa RPM1-like resistance gene 1 (OsRLR1), which leads to hypersensitiveresponse (HR)-like lesions on the leaf blade and broad-range resistance to the fungal pathogenPyricularia oryzae (syn. Magnaporthe oryzae) and the bacterial pathogen Xanthomonas oryzaepv. oryzae, together with strong growth reduction. Consistently, OsRLR1-overexpression linesshowed enhanced resistance to both pathogens. Moreover, we found that OsRLR1 mediates thedefence response through direct interaction in the nucleus with the transcription factorOsWRKY19. Down-regulation of OsWRKY19 in the rlr1 mutant compromised the HR-likephenotype and resistance response, and largely restored plant growth. OsWRKY19 binds to thepromoter of OsPR10 to activate the defence response. Taken together, our data highlight therole of a new residue involved in the NB-LRR activation mechanism, allowing identification of anew NB-LRR downstream signalling pathway.
Journal Article
Meta-analysis of seed weight QTLome using a consensus and highly dense genetic map in Brassica napus L
by
Bilgrami, Sayedehsaba
,
Rousseau-Gueutin, Mathieu
,
Liu, Liezhao
in
Brassica napus
,
Crop yield
,
Embryos
2023
Key messageWe report here the discovery of high-confidence MQTL regions and of putative candidate genes associated with seed weight in B. napus using a highly dense consensus genetic map and by comparing various large-scale multiomics datasets.Seed weight (SW) is a direct determinant of seed yield in Brassica napus and is controlled by many loci. To unravel the main genomic regions associated with this complex trait, we used 13 available genetic maps to construct a consensus and highly dense map, comprising 40,401 polymorphic markers and 9191 genetic bins, harboring a cumulative length of 3047.8 cM. Then, we performed a meta-analysis using 639 projected SW quantitative trait loci (QTLs) obtained from studies conducted since 1999, enabling the identification of 57 meta-QTLS (MQTLs). The confidence intervals of our MQTLs were 9.8 and 4.3 times lower than the average CIs of the original QTLs for the A and C subgenomes, respectively, resulting in the detection of some key genes and several putative novel candidate genes associated with SW. By comparing the genes identified in MQTL intervals with multiomics datasets and coexpression analyses of common genes, we defined a more reliable and shorter list of putative candidate genes potentially involved in the regulation of seed maturation and SW. As an example, we provide a list of promising genes with high expression levels in seeds and embryos (e.g., BnaA03g04230D, BnaC03g08840D, BnaA10g29580D and BnaA03g27410D) that can be more finely studied through functional genetics experiments or that may be useful for MQTL-assisted breeding for SW. The high-density genetic consensus map and the single nucleotide polymorphism (SNP) physical map generated from the latest B. napus cv. Darmor-bzh v10 assembly will be a valuable resource for further mapping and map-based cloning of other important traits.
Journal Article
Satellite-Observed Increase in Aboveground Carbon over Southwest China during 2013-2021
2024
Over the past 4 decades, Southwest China has the fast vegetation growth and aboveground biomass carbon (AGC) accumulation, largely attributed to the active implementation of ecological projects. However, Southwest China has been threatened by frequent extreme drought events recently, potentially countering the expected large AGC increase caused by the ecological projects. Here, we used the L-band vegetation optical depth to quantify the AGC dynamics over Southwest China during the period 2013-2021. Our results showed a net AGC sink of 0.064 [0.057, 0.077] Pg C year −1 (the range represents the maximum and minimum AGC values), suggesting that Southwest China acted as an AGC sink over the study period. Note that the AGC loss of 0.113 [0.101, 0.136] Pg C year −1 was found during 2013-2014, which could mainly be attributed to the negative influence of extreme droughts on AGC changes in Southwest China, particularly in the Yunnan province. For each land use type (i.e., dense forests, persistent forests, nonforests, afforestation, and forestry), the largest AGC stock increase of 0.032 [0.028, 0.036] Pg C year −1 was found in nonforests, owing to their widespread land cover rate over Southwest China. For AGC density (i.e., AGC per unit area), the afforestation areas showed the largest AGC density increase of 0.808 [0.724, 0.985] Mg C ha −1 year −1 , reflecting the positive effect of afforestation on AGC increase. Moreover, the karst areas exhibited a higher increasing rate of AGC density than nonkarst areas, suggesting that the karst ecosystems have a high carbon sink capacity over Southwest China.
Journal Article
Substance accumulation of a wetland plant, Leersia japonica, during senescence in the Yihe and Shuhe River Basin, North China
2022
Leersia japonica is a perennial Gramineae grass that is dominant in shallow wetlands of the Yihe and Shuhe River Basin, North China. Previous studies have shown that L. japonica recovers early (March), tillers strongly, and has an excellent ability to purify sewage in spring. This early revival might play a vital role in water purification function; however, whether the plant benefits from the physiological activities during senescence remains unclear. Therefore, in this study, an experiment was conducted during the winter of 2016 and in the following spring. Morphology (height, biomass, root morphology), physiology (root vitality, malondialdehyde [MDA], superoxide dismutase [SOD]), substance contents (soluble sugar, soluble protein) and substance transportation (activity of enzymes for transportation and energy supply) were determined during weeks 0, 2, 4, 6, and 8 of the senescence stage (October 11, 2016); as well as substance contents and bud increments during days 0,7, 14, 21, 31 and 41 of the revival period (February 22, 2017). The results revealed that (1) the root biomass of L. japonica increased significantly during senescence, even after the leaves withered. (2) The root diameter of L. japonica decreased significantly, while root weight per volume and root superficial area per volume increased significantly during senescence. The root vitality was relatively stable in winter, especially for root absorption area per volume. (3) No significant difference was observed in membrane stability of stems, rhizomes and roots of L. japonica in winter, with the MDA content remaining stable and SOD activity increasing significantly during senescence. (4) The soluble sugar content of all tissues of L. japonica increased sharply during senescence; while it decreased significantly in spring, especially for buds. (5) The enzymes for substance metabolism responded differently, with activities of H + -ATPase and pyruvate decarboxylase (PDC) decreasing, and alcohol dehydrogenase (ADH) increasing. Therefore, L. japonica has active morphological adaptation of roots, physiological regulation, and massive substance accumulation during senescence stage. The special life-history trait ensures L. japonica survival in winter and revival in early spring, which makes it being an excellent plant for purifying sewage in spring.
Journal Article
New Forest Aboveground Biomass Maps of China Integrating Multiple Datasets
2021
Mapping the spatial variation of forest aboveground biomass (AGB) at the national or regional scale is important for estimating carbon emissions and removals and contributing to global stocktake and balancing the carbon budget. Recently, several gridded forest AGB products have been produced for China by integrating remote sensing data and field measurements, yet significant discrepancies remain among these products in their estimated AGB carbon, varying from 5.04 to 9.81 Pg C. To reduce this uncertainty, here, we first compiled independent, high-quality field measurements of AGB using a systematic and consistent protocol across China from 2011 to 2015. We applied two different approaches, an optimal weighting technique (WT) and a random forest regression method (RF), to develop two observationally constrained hybrid forest AGB products in China by integrating five existing AGB products. The WT method uses a linear combination of the five existing AGB products with weightings that minimize biases with respect to the field measurements, and the RF method uses decision trees to predict a hybrid AGB map by minimizing the bias and variance with respect to the field measurements. The forest AGB stock in China was 7.73 Pg C for the WT estimates and 8.13 Pg C for the RF estimates. Evaluation with the field measurements showed that the two hybrid AGB products had a lower RMSE (29.6 and 24.3 Mg/ha) and bias (−4.6 and −3.8 Mg/ha) than all five participating AGB datasets. Our study demonstrated both the WT and RF methods can be used to harmonize existing AGB maps with field measurements to improve the spatial variability and reduce the uncertainty of carbon stocks. The new spatial AGB maps of China can be used to improve estimates of carbon emissions and removals at the national and subnational scales.
Journal Article
Dynamics of Aboveground Carbon Across Karst Terrestrial Ecosystems in China from 2015 to 2021
2024
Over the past half-century, environmental degradation and human disturbances have threatened the aboveground biomass carbon (AGC) in China’s karst ecosystems. However, recent ecological programs have led to environmental improvements, leaving it unclear whether China’s karst ecosystems act as an AGC sink or AGC source. In this study, we utilized L-band vegetation optical depth to quantify the dynamics of AGC across the karst regions of China from 2015 to 2021. We observed an increase in AGC density of 0.73 Mg C ha−1 yr−1, suggesting that karst ecosystems in China functioned as an AGC sink throughout the research period. The largest increase in AGC density, 1.29 Mg C ha−1 yr−1, was observed in Central China, indicating an AGC sink capacity stronger than that of other regions. Among the different land-use types, forests played a dominant role, exhibiting the largest net change in AGC density at 1.03 Mg C ha−1 yr−1. Furthermore, using the random forest model, temperature, soil clay content, and altitude were identified as the primary factors driving AGC changes. Our results enhance the understanding of the role of China’s karst terrestrial ecosystem in the global carbon cycle, emphasizing its contribution to the global carbon sink.
Journal Article
HyPRP1 Gene Suppressed by Multiple Stresses Plays a Negative Role in Abiotic Stress Tolerance in Tomato
2016
Many hybrid proline-rich protein (HyPRP) genes respond to biotic and abiotic stresses in plants, but little is known about their roles other than as putative cell-wall structural proteins. A HyPRP1 gene encodes a protein with proline-rich domain, and an eight-cysteine motif was identified from our previous microarray experiments on drought-tolerant tomato. In this study, the expression of the HyPRP1 gene in tomato was suppressed under various abiotic stresses, such as drought, high salinity, cold, heat, and oxidative stress. Transgenic functional analysis showed no obvious changes in phenotypes, but enhanced tolerance to various abiotic stresses (e.g., oxidative stress, dehydration, and salinity) was observed in RNAi transgenic plants. Interestingly, several SO2 detoxification-related enzymes, including sulfite oxidase, ferredoxins (Fds), and methionine sulfoxide reductase A (Msr A), were revealed in HyPRP1-interacting proteins identified by Yeast Two-Hybrid screening. More sulfates and transcripts of Msr A and Fds were accumulated in HyPRP1 knockdown lines when wild-type plants were exposed to SO2 gas. Our findings illustrate that the tomato HyPRP1 is a negative regulator of salt and oxidative stresses and is probably involved in sulfite metabolism.
Journal Article
Evaluation of optical and microwave-derived vegetation indices for monitoring aboveground biomass over China
by
Southwest University [Chongqing]
,
Interactions Sol Plante Atmosphère (UMR ISPA) ; Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
,
Zhang, Shuo
in
AboveGround biomass (AGB)
,
Biomass
,
Correlation
2025
The microwave-derived vegetation optical depth (VOD) products were used to monitor aboveground biomass (AGB) at regional to global scales, but the ability of VOD to monitor AGB in China is uncertain. This study evaluated the sensitivity of four VOD products (e.g. L-VOD, IB-VOD, LPDR-VOD, and Liu-VOD) and optical vegetation indices (VI) (e.g. NDVI, EVI, LAI, and tree cover from MODIS) to the AGB across China. Our results showed tree cover product has the highest spatial agreement with reference AGBs (indicated by the median correlation value of 0.85), followed by L-VOD (with a median correlation value of 0.80), which performs better than other VIs and VODs. Further comparisons between reference and estimated AGB computed using the fitted logistic regression showed that AGB estimations from tree cover and L-VOD outperformed the estimations from other VIs and VODs over most vegetation types (except forest), indicated by the higher median correlation value of 0.86 and 0.83 and lower RMSD of 23.9 and 27.3 Mg/ha, respectively. The good performance of tree cover could be partly due to that tree cover product is not independent from the reference AGBs. The good performance of L-VOD can be explained by its higher sensitivity to the vegetation characteristics of the entire canopy (including woody component), relative to other VODs and VIs. Among the six reference AGB products, Saatchi-WT and Saatchi-RF products were found to have the best correlations with VIs and VODs. This study demonstrates that microwave VODs, particularly L-VOD, are effective proxies for large-scale monitoring of vegetation AGB in China.
Journal Article
Physiological and molecular insights into the resilience of biological nitrogen fixation to applied nitrogen in Saccharum spontaneum, wild progenitor of sugarcane
2023
Excessive use of nitrogen (N) fertilizer for sugarcane cultivation is a significant cause of greenhouse gas emission. N use-efficiency (NUE) of sugarcane is relatively low, and considerable effort is now directed to exploit biological nitrogen fixation (BNF) in sugarcane. We hypothesize that genetic base-broadening of sugarcane using high-BNF Saccharum spontaneum , a wild progenitor of sugarcane, will help develop N-efficient varieties. We found remarkable genetic variation for BNF and growth in S. spontaneum accessions, and BNF in some accessions remained highly resilient to inorganic N application. Physiological and molecular analyses of two S. spontaneum accessions with high-BNF capacity and growth, namely G152 and G3, grown under N replete and low N conditions showed considerable similarity for total N, NH 4 -N, soluble sugar, indoleacetic acid, gibberellic acid, zeatin and abscisic acid content; yet, they were strikingly different at molecular level. Global gene expression analysis of G152 and G3 grown under contrasting N supply showed genotype effect explaining much of the gene expression variation observed. Differential gene expression analysis found an over-representation of carbohydrate and amino acid metabolism and transmembrane transport genes in G152 and an enrichment of lipid metabolism and single-organism processes genes in G3, suggesting that distinctly divergent metabolic strategies are driving N-related processes in these accessions. This was attested by the remarkable variation in carbon, N, amino acid and hormone metabolism-related gene expression in G152 and G3 under high- and low-N supply. We conclude that both accessions may be achieving similar BNF and growth phenotypes through overlapping but distinctly different biochemical and molecular mechanisms.
Journal Article