Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Späth, Patricia"
Sort by:
Impaired detection of omicron by SARS-CoV-2 rapid antigen tests
Since autumn 2020, rapid antigen tests (RATs) have been implemented in several countries as an important pillar of the national testing strategy to rapidly screen for infections on site during the SARS-CoV-2 pandemic. The current surge in infection rates around the globe is driven by the variant of concern (VoC) omicron (B.1.1.529). Here, we evaluated the performance of nine SARS-CoV-2 RATs in a single-centre laboratory study. We examined a total of 115 SARS-CoV-2 PCR-negative and 166 SARS-CoV-2 PCR-positive respiratory swab samples (101 omicron, 65 delta (B.1.617.2)) collected from October 2021 until January 2022 as well as cell culture-expanded clinical isolates of both VoCs. In an assessment of the analytical sensitivity in clinical specimen, the 50% limit of detection (LoD50) ranged from 1.77 × 106 to 7.03 × 107 RNA copies subjected to the RAT for omicron compared to 1.32 × 105 to 2.05 × 106 for delta. To score positive in these point-of-care tests, up to 10-fold (LoD50) or 101-fold (LoD95) higher virus loads were required for omicron- compared to delta-containing samples. The rates of true positive test results for omicron samples in the highest virus load category (Ct values < 25) ranged between 31.4 and 77.8%, while they dropped to 0–8.3% for samples with intermediate Ct values (25–30). Of note, testing of expanded virus stocks suggested a comparable RAT sensitivity of both VoCs, questioning the predictive value of this type of in vitro-studies for clinical performance. Given their importance for national test strategies in the current omicron wave, awareness must be increased for the reduced detection rate of omicron infections by RATs and a short list of suitable RATs that fulfill the minimal requirements of performance should be rapidly disclosed.
Comparison of four commercial, automated antigen tests to detect SARS-CoV-2 variants of concern
A versatile portfolio of diagnostic tests is essential for the containment of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Besides nucleic acid-based test systems and point-of-care (POCT) antigen (Ag) tests, quantitative, laboratory-based nucleocapsid Ag tests for SARS-CoV-2 have recently been launched. Here, we evaluated four commercial Ag tests on automated platforms and one POCT to detect SARS-CoV-2. We evaluated PCR-positive ( n  = 107) and PCR-negative ( n  = 303) respiratory swabs from asymptomatic and symptomatic patients at the end of the second pandemic wave in Germany (February–March 2021) as well as clinical isolates EU1 (B.1.117), variant of concern (VOC) Alpha (B.1.1.7) or Beta (B.1.351), which had been expanded in a biosafety level 3 laboratory. The specificities of automated SARS-CoV-2 Ag tests ranged between 97.0 and 99.7% (Lumipulse G SARS-CoV-2 Ag (Fujirebio): 97.03%, Elecsys SARS-CoV-2 Ag (Roche Diagnostics): 97.69%; LIAISON ® SARS-CoV-2 Ag (Diasorin) and SARS-CoV-2 Ag ELISA (Euroimmun): 99.67%). In this study cohort of hospitalized patients, the clinical sensitivities of tests were low, ranging from 17.76 to 52.34%, and analytical sensitivities ranged from 420,000 to 25,000,000 Geq/ml. In comparison, the detection limit of the Roche Rapid Ag Test (RAT) was 9,300,000 Geq/ml, detecting 23.58% of respiratory samples. Receiver-operating-characteristics (ROCs) and Youden’s index analyses were performed to further characterize the assays’ overall performance and determine optimal assay cutoffs for sensitivity and specificity. VOCs carrying up to four amino acid mutations in nucleocapsid were detected by all five assays with characteristics comparable to non-VOCs. In summary, automated, quantitative SARS-CoV-2 Ag tests show variable performance and are not necessarily superior to a standard POCT. The efficacy of any alternative testing strategies to complement nucleic acid-based assays must be carefully evaluated by independent laboratories prior to widespread implementation.
Variable detection of Omicron-BA.1 and -BA.2 by SARS-CoV-2 rapid antigen tests
During 2022, the COVID-19 pandemic has been dominated by the variant of concern (VoC) Omicron (B.1.1.529) and its rapidly emerging subvariants, including Omicron-BA.1 and -BA.2. Rapid antigen tests (RATs) are part of national testing strategies to identify SARS-CoV-2 infections on site in a community setting or to support layman’s diagnostics at home. We and others have recently demonstrated an impaired RAT detection of infections caused by Omicron-BA.1 compared to Delta. Here, we evaluated the performance of five SARS-CoV-2 RATs in a single-centre laboratory study examining a total of 140 SARS-CoV-2 PCR-positive respiratory swab samples, 70 Omicron-BA.1 and 70 Omicron-BA.2, as well as 52 SARS-CoV-2 PCR-negative swabs collected from March 8th until April 10th, 2022. One test did not meet minimal criteria for specificity. In an assessment of the analytical sensitivity in clinical specimen, the 50% limit of detection (LoD50) ranged from 4.2 × 104 to 9.2 × 105 RNA copies subjected to the RAT for Omicron-BA.1 compared to 1.3 × 105 to 1.5 × 106 for Omicron-BA.2. Overall, intra-assay differences for the detection of Omicron-BA.1-containing and Omicron-BA.2-containing samples were non-significant, while a marked overall heterogeneity among the five RATs was observed. To score positive in these point-of-care tests, up to 22-fold (LoD50) or 68-fold (LoD95) higher viral loads were required for the worst performing compared to the best performing RAT. The rates of true-positive test results for these Omicron subvariant-containing samples in the highest viral load category (Ct values < 25) ranged between 44.7 and 91.1%, while they dropped to 8.7 to 22.7% for samples with intermediate Ct values (25–30). In light of recent reports on the emergence of two novel Omicron-BA.2 subvariants, Omicron-BA.2.75 and BJ.1, awareness must be increased for the overall reduced detection rate and marked differences in RAT performance for these Omicron subvariants.
Automated antigen assays display a high heterogeneity for the detection of SARS-CoV-2 variants of concern, including several Omicron sublineages
Diagnostic tests for direct pathogen detection have been instrumental to contain the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Automated, quantitative, laboratory-based nucleocapsid antigen (Ag) tests for SARS-CoV-2 have been launched alongside nucleic acid-based test systems and point-of-care (POC) lateral-flow Ag tests. Here, we evaluated four commercial Ag tests on automated platforms for the detection of different sublineages of the SARS-CoV-2 Omicron variant of concern (VoC) (B.1.1.529) in comparison with “non-Omicron” VoCs. A total of 203 Omicron PCR-positive respiratory swabs (53 BA.1, 48 BA.2, 23 BQ.1, 39 XBB.1.5 and 40 other subvariants) from the period February to March 2022 and from March 2023 were examined. In addition, tissue culture-expanded clinical isolates of Delta (B.1.617.2), Omicron-BA.1, -BF.7, -BN.1 and -BQ.1 were studied. These results were compared to previously reported data from 107 clinical “non-Omicron” samples from the end of the second pandemic wave (February to March 2021) as well as cell culture-derived samples of wildtype (wt) EU-1 (B.1.177), Alpha VoC (B.1.1.7) and Beta VoC (B.1.351)). All four commercial Ag tests were able to detect at least 90.9% of Omicron-containing samples with high viral loads (Ct < 25). The rates of true-positive test results for BA.1/BA.2-positive samples with intermediate viral loads (Ct 25–30) ranged between 6.7% and 100.0%, while they dropped to 0 to 15.4% for samples with low Ct values (> 30). This heterogeneity was reflected also by the tests’ 50%-limit of detection (LoD50) values ranging from 44,444 to 1,866,900 Geq/ml. Respiratory samples containing Omicron-BQ.1/XBB.1.5 or other Omicron subvariants that emerged in 2023 were detected with enormous heterogeneity (0 to 100%) for the intermediate and low viral load ranges with LoD50 values between 23,019 and 1,152,048 Geq/ml. In contrast, detection of “non-Omicron” samples was more sensitive, scoring positive in 35 to 100% for the intermediate and 1.3 to 32.9% of cases for the low viral loads, respectively, corresponding to LoD50 values ranging from 6181 to 749,792 Geq/ml. All four assays detected cell culture-expanded VoCs Alpha, Beta, Delta and Omicron subvariants carrying up to six amino acid mutations in the nucleocapsid protein with sensitivities comparable to the non-VoC EU-1. Overall, automated quantitative SARS-CoV-2 Ag assays are not more sensitive than standard rapid antigen tests used in POC settings and show a high heterogeneity in performance for VoC recognition. The best of these automated Ag tests may have the potential to complement nucleic acid-based assays for SARS-CoV-2 diagnostics in settings not primarily focused on the protection of vulnerable groups. In light of the constant emergence of new Omicron subvariants and recombinants, most recently the XBB lineage, these tests’ performance must be regularly re-evaluated, especially when new VoCs carry mutations in the nucleocapsid protein or immunological and clinical parameters change.
Ten rapid antigen tests for SARS-CoV-2 widely differ in their ability to detect Omicron-BA.4 and -BA.5
Since late 2021, the variant landscape of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been dominated by the variant of concern (VoC) Omicron and its sublineages. We and others have shown that the detection of Omicron-BA.1 and -BA.2-positive respiratory specimens by rapid antigen tests (RATs) is impaired compared to Delta VoC-containing samples. Here, in a single-center retrospective laboratory study, we evaluated the performance of ten most commonly used RATs for the detection of Omicron-BA.4 and -BA.5 infections. We used 171 respiratory swab specimens from SARS-CoV-2 RNA-positive patients, of which 71 were classified as BA.4 and 100 as BA.5. All swabs were collected between July and September 2022. 50 SARS-CoV-2 PCR-negative samples from healthy individuals, collected in October 2022, showed high specificity in 9 out of 10 RATs. When assessing analytical sensitivity using clinical specimens, the 50% limit of detection (LoD50) ranged from 7.6 × 104 to 3.3 × 106 RNA copies subjected to the RATs for BA.4 compared to 6.8 × 104 to 3.0 × 106 for BA.5. Overall, intra-assay differences for the detection of these two Omicron subvariants were not significant for both respiratory swabs and tissue culture-expanded virus isolates. In contrast, marked heterogeneity was observed among the ten RATs: to be positive in these point-of-care tests, up to 443-fold (BA.4) and up to 56-fold (BA.5) higher viral loads were required for the worst performing RAT compared to the best performing RAT. True-positive rates for Omicron-BA.4- or -BA.5-containing specimens in the highest viral load category (Ct values < 25) ranged from 94.3 to 34.3%, dropping to 25.6 to 0% for samples with intermediate Ct values (25–30). We conclude that the high heterogeneity in the performance of commonly used RATs remains a challenge for the general public to obtain reliable results in the evolving Omicron subvariant-driven pandemic.
Gene deletion as a possible strategy adopted by New World Leishmania infantum to maximize geographic dispersion
The present study investigates implications of a sub-chromosomal deletion in Leishmania infantum strains, the causative agent of American Visceral Leishmaniasis (AVL). Primarily found in New World strains, the deletion leads to the absence of the ecto-3'-nucleotidase/nuclease enzyme, impacting parasite virulence, pathogenicity, and drug susceptibility. The factors favoring prevalence and the widespread geographic distribution of these deleted mutant parasites (DEL) in the NW (NW) are discussed under the generated data. We conducted phenotypic assessments of the sub-chromosomal deletion through in vitro assays with axenic parasites and experimental infections in both in vitro and in vivo models of vertebrate and invertebrate hosts using geographically diverse mutant field isolates. Despite reduced pathogenicity, the DEL strains efficiently infect vertebrate hosts and exhibit relevant differences, including enhanced metacyclogenesis and colonization rates in sand flies, potentially facilitating transmission. This combination may represent a more effective way to maintain and disperse the transmission cycle of DEL strains. Phenotypic assessments reveal altered parasite fitness, with potential enhanced transmissibility at the population level. Reduced susceptibility of DEL strains to miltefosine, a key drug in VL treatment, further complicates control efforts. The study underscores the importance of typing parasite genomes for surveillance and control, advocating for the sub-chromosomal deletion as a molecular marker in AVL management.
Gene deletion as a possible strategy adopted by New World Leishmania infantum to maximize geographic dispersion
The present study investigates implications of a sub-chromosomal deletion in Leishmania infantum strains, the causative agent of American Visceral Leishmaniasis (AVL). Primarily found in New World strains, the deletion leads to the absence of the ecto-3'-nucleotidase/nuclease enzyme, impacting parasite virulence, pathogenicity, and drug susceptibility. The factors favoring prevalence and the widespread geographic distribution of these deleted mutant parasites (DEL) in the NW (NW) are discussed under the generated data. We conducted phenotypic assessments of the sub-chromosomal deletion through in vitro assays with axenic parasites and experimental infections in both in vitro and in vivo models of vertebrate and invertebrate hosts using geographically diverse mutant field isolates. Despite reduced pathogenicity, the DEL strains efficiently infect vertebrate hosts and exhibit relevant differences, including enhanced metacyclogenesis and colonization rates in sand flies, potentially facilitating transmission. This combination may represent a more effective way to maintain and disperse the transmission cycle of DEL strains. Phenotypic assessments reveal altered parasite fitness, with potential enhanced transmissibility at the population level. Reduced susceptibility of DEL strains to miltefosine, a key drug in VL treatment, further complicates control efforts. The study underscores the importance of typing parasite genomes for surveillance and control, advocating for the sub-chromosomal deletion as a molecular marker in AVL management.
Participation in intra-firm communities of practice: a case study from the automotive industry
Purpose - Communities of practice (CoPs) have been found to support knowledge creation by enabling knowledge sharing among experts in firms. However, some perform better than others. This paper seeks to explore what incentivizes employees to share knowledge in intra-firm CoPs.Design methodology approach - The paper presents a longitudinal case study in a large automotive company that introduced 82 cross-functional CoPs into its engineering department. Using extensive qualitative data, two sets of communities: best and worst performing were analyzed.Findings - It was found that perceived benefits and the employees' willingness to invest individual efforts into community work are stronger in better performing communities. Members of the better performing CoPs drew most benefits from participating in organizational decision processes, as they were able to influence the agenda and create relevant standards. The patterns observed relate to the efforts, benefits, and barriers of community work.Research limitations implications - The single case study design limits the generalizability of the results beyond the company studied. Furthermore, some of the data employed were perceptional and relied partly on self-reporting of the community members.Practical implications - The paper argues that management support for CoPs should aim at influencing the individual cost-benefit calculus of community members. Respecting and implementing results from the communities' work is likely to provide the very basis for innovations to emerge at all.Originality value - Other than extant studies on CoP performance that focus on company benefits from deploying CoPs, this paper offers a new perspective by exploring the benefits and incentives available to community members.
Gene deletion as a possible strategy adopted by New World Leishmania infantum to maximize geographic dispersion
The present study investigates implications of a sub-chromosomal deletion in Leishmania infantum strains, the causative agent of American Visceral Leishmaniasis (AVL). Primarily found in New World strains, the deletion leads to the absence of the ecto-3’-nucleotidase/nuclease enzyme (3’NU/NT), impacting parasite virulence, pathogenicity, and drug susceptibility. The potential factors favoring prevalence and the widespread geographic distribution of these deleted mutant parasites (DEL) in the New World (NW) are discussed under the generated data. We conducted phenotypic analyses of the parasites showing the sub- chromosomal deletion by applying in vitro assays of 3’NU/NT activity, metacyclic enrichment, and relative quantitation of transcripts abundance on axenic parasites. We further performed experimental infections in both in vitro and in vivo models of vertebrate and invertebrate hosts using geographically diverse mutant field isolates. Virulence assays, poorer ability to survive neutrophil traps (NETs) and murine model infection revealed reduced pathogenicity in vertebrate hosts by the DEL strains. Conversely, these parasites exhibit enhanced metacyclogenesis and colonization rates in sand flies, potentially facilitating transmission. This combination may represent a more efficient way to maintain and disperse the transmission cycle of DEL strains. Phenotypic assessments reveal altered parasite fitness, with enhanced transmissibility at the population level. Reduced susceptibility of DEL strains to miltefosine, a key drug in VL treatment, further complicates control efforts. Our study underscores the importance of typing parasite genomes for surveillance and control and proposes the sub-chromosomal deletion as a molecular marker in AVL management.