Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
169 result(s) for "Spadaro, Giuseppe"
Sort by:
Thymic Stromal Lymphopoietin Isoforms, Inflammatory Disorders, and Cancer
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine originally isolated from a murine thymic stromal cell line. TSLP exerts its biological effects by binding to a high-affinity heteromeric complex composed of thymic stromal lymphopoietin receptor chain and IL-7Rα. TSLP is primarily expressed by activated lung and intestinal epithelial cells, keratinocytes, and fibroblasts. However, dendritic cells (DCs), mast cells, and presumably other immune cells can also produce TSLP. Different groups of investigators have demonstrated the existence of two variants for TSLP in human tissues: the main isoform expressed in steady state is the short form (sf TSLP), which plays a homeostatic role, whereas the long form (lfTSLP) is upregulated in inflammatory conditions. In addition, there is evidence that in pathological conditions, TSLP can be cleaved by several endogenous proteases. Several cellular targets for TSLP have been identified, including immune (DCs, ILC2, T and B cells, NKT and Treg cells, eosinophils, neutrophils, basophils, monocytes, mast cells, and macrophages) and non-immune cells (platelets and sensory neurons). TSLP has been originally implicated in a variety of allergic diseases (e.g., atopic dermatitis, bronchial asthma, eosinophilic esophagitis). Emerging evidence indicates that TSLP is also involved in chronic inflammatory (i.e., chronic obstructive pulmonary disease and celiac disease) and autoimmune (e.g., psoriasis, rheumatoid arthritis) disorders and several cancers. These emerging observations greatly widen the role of TSLP in different human diseases. Most of these studies have not used tools to analyze the expression of the two TSLP isoforms. The broad pathophysiologic profile of TSLP has motivated therapeutic targeting of this cytokine. Tezepelumab is a first-in-class human monoclonal antibody (1) that binds to TSLP inhibiting its interaction with TSLP receptor complex. Tezepelumab given as an add-on-therapy to patients with severe uncontrolled asthma has shown safety and efficacy. Several clinical trials are evaluating the safety and the efficacy of tezepelumab in different inflammatory disorders. Monoclonal antibodies used to neutralize TSLP should not interact or hamper the homeostatic effects of sf TSLP.
Heterogeneity of Liver Disease in Common Variable Immunodeficiency Disorders
Common variable immunodeficiency (CVID) is the most frequent primary immunodeficiency (PID) in adulthood and is characterized by severe reduction of immunoglobulin serum levels and impaired antibody production in response to vaccines and pathogens. Beyond the susceptibility to infections, CVID encompasses a wide spectrum of clinical manifestations related to a complex immune dysregulation that also affects liver. Although about 50% CVID patients present persistently deranged liver function, burden, and nature of liver involvement have not been systematically investigated in most cohort studies published in the last decades. Therefore, the prevalence of liver disease in CVID widely varies depending on the study design and the sampling criteria. This review seeks to summarize the evidence about the most relevant causes of liver involvement in CVID, including nodular regenerative hyperplasia (NRH), infections and malignancies. We also describe the clinical features of liver disease in some monogenic forms of PID included in the clinical spectrum of CVID as ICOS, NFKB1, NFKB2, CTLA-4, PI3Kδ pathway, ADA2, and IL21-R genetic defects. Finally, we discuss the clinical applications of the various diagnostic tools and the possible therapeutic approaches for the management of liver involvement in the context of CVID.
Mepolizumab improves sino-nasal symptoms and asthma control in severe eosinophilic asthma patients with chronic rhinosinusitis and nasal polyps: a 12-month real-life study
Background: Severe eosinophilic asthma is frequently associated to chronic rhinosinusitis and nasal polyposis (CRSwNP) that contribute to poor asthma control. Mepolizumab is an anti-IL-5 monoclonal antibody, approved for the treatment of severe eosinophilic asthma. A limited number of studies have assessed the efficacy of mepolizumab on CRSwNP in severe asthmatics. We aim to evaluate the efficacy of mepolizumab on sino-nasal symptoms, polyp growth and asthma control in severe eosinophilic asthma patients with CRSwNP in real life. Methods: In this study 44 severe eosinophilic asthma patients with CRSwNP were treated with mepolizumab (100 mg q4w) for 1 year. The following outcomes were assessed before (T0), after 6 (T6) and 12 months (T12) of treatment: sino/nasal outcome test (SNOT-22), Total Endoscopic Nasal Polyp Score (TENPS), %FEV1 (FEV1/FEV1 predicted) and Asthma control test (ACT). Blood eosinophil count, exhaled nitric oxide (FENO) and prednisone intake were measured. In a subgroup of patients, nasal cytology was performed before (T0), after 6 (T6) and after 12 months (T12) of treatment with mepolizumab. Results: We reported a significant reduction of SNOT-22 [from 51.5 ± 21.2 at baseline (T0) to 31.70 ± 17.36 at T6 and 29.7 ± 21.5 at T12 (T0–T12 p < 0.001)] and a decrease of TENPS (from 2.88 ± 3.07 to 1.70 ± 2.37 and 1.77 ± 2.56 at T0, T6 and T12, respectively, T0–T12 p = 0.99). A significant improvement of %FEV1, ACT and a decrease in blood eosinophils and mean prednisone intake were also reported. No statistically significant decreasing trend was measured for FENO. Nasal cytology findings suggest a significant reduction of eosinophil percentage following mepolizumab treatment (from 16.8 ± 7.2% to 3.6 ± 6.2% and 0.8 ± 2.4% at T0, T6 and T12 respectively, T0 to T12: p < 0.001). Conclusions: Mepolizumab improves sino-nasal and asthma symptoms and reduces polyp growth in patients with severe eosinophilic asthma and concomitant CRSwNP in real life. The reviews of this paper are available via the supplemental material section.
Differently expressed microRNA in response to the first Ig replacement therapy in common variable immunodeficiency patients
Common variable immunodeficiency (CVID) is a complex primary immunodeficiency disorder characterized by a high clinical and genetic heterogeneity. The molecular underlying causes of CVID are not still now clear and the delays in diagnosis and treatment worsen the prognosis of the patients. MicroRNAs are non-coding, endogenous small RNAs often deregulated in human diseases, such as autoimmune and other immune-based disorders. In the present study, we aimed to evaluate miRNAs associated with the CVID and, in particular, with the response to the first Ig replacement therapy. To this aim, we compared miRNA profile obtained by serum samples of treatment-naïve CVID patients before and 24 h after the first Ig replacement therapy. For the first time, using a microarray assay followed by an integrated bioinformatics/biostatistics analysis, we identified five microRNAs (hsa-miR-6742, hsa-miR-1825, hsa-miR-4769-3p, hsa-miR-1228-3p, hsa-miR-1972) differently modulated in CVID patients by Ig infusion. All of them were down-regulated, excepted miR-6742 which was up-regulated. The latter may be of particular interest, since its functions are related to pathways involving Class I MHC mediated antigen processing and adaptive as well as innate Immune System. In conclusion, this study shows for the first time the modulation of miRNAs involved in CVID patients after the first Ig replacement therapy. Further studies are needed to assess whether such miRNAs could represent novel potential biomarkers in management and therapy of CVID patients.
Gut Microbiome and Common Variable Immunodeficiency: Few Certainties and Many Outstanding Questions
Common variable immunodeficiency (CVID) is the most common symptomatic primary antibody immunodeficiency, characterized by reduced serum levels of IgG, IgA, and/or IgM. The vast majority of CVID patients have polygenic inheritance. Immune dysfunction in CVID can frequently involve the gastrointestinal tract and lung. Few studies have started to investigate the gut microbiota profile in CVID patients. Overall, the results suggest that in CVID patients there is a reduction of alpha and beta diversity compared to controls. In addition, these patients can exhibit increased plasma levels of lipopolysaccharide (LPS) and markers (sCD14 and sCD25) of systemic immune cell activation. CVID patients with enteropathy exhibit decreased IgA expression in duodenal tissue. Mouse models for CVID unsatisfactorily recapitulate the polygenic causes of human CVID. The molecular pathways by which gut microbiota contribute to systemic inflammation and possibly tumorigenesis in CVID patients remain poorly understood. Several fundamental questions concerning the relationships between gut microbiota and the development of chronic inflammatory conditions, autoimmune disorders or cancer in CVID patients remain unanswered. Moreover, it is unknown whether it is possible to modify the microbiome and the outcome of CVID patients through specific therapeutic interventions.
Heterogeneity of Human Mast Cells With Respect to MRGPRX2 Receptor Expression and Function
Mast cells and their mediators play a role in the control of homeostasis and in the pathogenesis of several disorders. The concept of rodent mast cell heterogeneity, initially established in the mid-1960s has been extended in humans. Human mast cells isolated and purified from different anatomic sites can be activated aggregation of cell surface high affinity IgE receptors (FcεRI) by antigens, superantigens, anti-IgE, and anti-FcεRI. MAS-related G protein-coupled receptor-X2 (MRGPRX2) is expressed at high level in human skin mast cells (MCs) (HSMCs), synovial MCs (HSyMCs), but not in lung MCs (HLMCs). MRGPX2 can be activated by neuropeptide substance P, several opioids, cationic drugs, and 48/80. Substance P (5 × 10 M - 5 × 10 M) induced histamine and tryptase release from HSMCs and to a lesser extent from HSyMCs, but not from HLMCs and human cardiac MCs (HHMCs). Morphine (10 M - 3 × 10 M) selectively induced histamine and tryptase release from HSMCs, but not from HLMCs and HHMCs. SP and morphine were incomplete secretagogues because they did not induce the synthesis of arachidonic acid metabolites from human mast cells. In the same experiments anti-IgE (3 μg/ml) induced the release of histamine and tryptase and the synthesis of prostaglandin D (PGD ) from HLMCs, HHMCs, HSyMCs, and HSMCs. By contrast, anti-IgE induced the production of leukotriene C (LTC ) from HLMCs, HHMCs, HSyMCs, but not from HSMCs. These results are compatible with the heterogeneous expression and function of MRGPRX2 receptor on primary human mast cells isolated from different anatomic sites.
SARS-CoV-2 Vaccine Induced Atypical Immune Responses in Antibody Defects: Everybody Does their Best
BackgroundData on immune responses to SARS-CoV-2 in patients with Primary Antibody Deficiencies (PAD) are limited to infected patients and to heterogeneous cohorts after immunization.MethodsForty-one patients with Common Variable Immune Deficiencies (CVID), six patients with X-linked Agammaglobulinemia (XLA), and 28 healthy age-matched controls (HD) were analyzed for anti-Spike and anti-receptor binding domain (RBD) antibody production, generation of Spike-specific memory B-cells, and Spike-specific T-cells before vaccination and one week after the second dose of BNT162b2 vaccine.ResultsThe vaccine induced Spike-specific IgG and IgA antibody responses in all HD and in 20% of SARS-CoV-2 naive CVID patients. Anti-Spike IgG were detectable before vaccination in 4 out 7 CVID previously infected with SARS-CoV-2 and were boosted in six out of seven patients by the subsequent immunization raising higher levels than patients naïve to infection. While HD generated Spike-specific memory B-cells, and RBD-specific B-cells, CVID generated Spike-specific atypical B-cells, while RBD-specific B-cells were undetectable in all patients, indicating the incapability to generate this new specificity. Specific T-cell responses were evident in all HD and defective in 30% of CVID. All but one patient with XLA responded by specific T-cell only.ConclusionIn PAD patients, early atypical immune responses after BNT162b2 immunization occurred, possibly by extra-follicular or incomplete germinal center reactions. If these responses to vaccination might result in a partial protection from infection or reinfection is now unknown. Our data suggests that SARS-CoV-2 infection more effectively primes the immune response than the immunization alone, possibly suggesting the need for a third vaccine dose for patients not previously infected.
Secondary antibody deficiencies: what's around the corner?
Secondary antibody deficiencies (SADs) are characterized by impaired humoral immunity, which can cause recurrent and severe infections. Several factors may contribute to SAD development, making it difficult to establish a clear etiological classification. This heterogeneity also leads to clinical variability, further complicating patient management and treatment strategies. Various diagnostic and therapeutic algorithms are often adapted from those used in primary antibody deficiencies, potentially resulting in under- or over-treatment. Key points include the decision to initiate Immunoglobulin Replacement Therapy (IgRT) and the duration of the treatment. Given the increasing prevalence of SADs and the limited availability of immunoglobulin products, it is important to clarify when IgRT should be started. In this review, we summarize and update the different etiologies of SADs and propose a diagnostic algorithm applicable regardless of the underlying cause. We also examine the possible treatment options and diagnostic tools that can assist in making the correct therapeutic choice.
Common Variable Immunodeficiency and Autoimmune Diseases: A Retrospective Study of 95 Adult Patients in a Single Tertiary Care Center
Common variable immunodeficiency (CVID) is the most common clinically significant primary immunodeficiency in adulthood, which presents a broad spectrum of clinical manifestations, often including non-infectious complications in addition to heightened susceptibility to infections. These protean manifestations may significantly complicate the differential diagnosis resulting in diagnostic delay and under-treatment with increased mortality and morbidity. Autoimmunity occurs in up to 30% of CVID patients, and it is an emerging cause of morbidity and mortality in this type of patients. 95 patients (42 males and 53 females) diagnosed with CVID, basing on ESID diagnostic criteria, were enrolled in this retrospective cohort study. Clinical phenotypes were established according to Chapel 2012: i) no other disease-related complications, ii) cytopenias (thrombocytopenia/autoimmune hemolytic anemia/neutropenia), iii) polyclonal lymphoproliferation (granuloma/lymphoid interstitial pneumonitis/persistent unexplained lymphadenopathy), and iv) unexplained persistent enteropathy. Clinical items in the analysis were age, gender, and clinical features. Laboratory data included immunoglobulin (Ig)G, IgM and IgA levels at diagnosis, flow-cytometric analysis of peripheral lymphocytes (CD3+, CD3+CD4+, CD3+CD8+, CD19+, CD4+CD25highCD127low, CD19hiCD21loCD38lo, and follicular T helper cell counts). Comparisons of continuous variables between groups were performed with unpaired t-test, when applicable. 39 patients (41%) showed autoimmune complications. Among them, there were 21 females (53.8%) and 18 males (46.2%). The most prevalent autoimmune manifestations were cytopenias (17.8%), followed by arthritis (11.5%), psoriasis (9.4%), and vitiligo (6.3%). The most common cytopenia was immune thrombocytopenia, reported in 10 out of 95 patients (10.5%), followed by autoimmune hemolytic anemia (n=3, 3.1%) and autoimmune neutropenia (n=3, 3.1%). Other autoimmune complications included thyroiditis, coeliac disease, erythema nodosum, Raynaud’s phenomenon, alopecia, recurring oral ulcers, autoimmune gastritis, and primary biliary cholangitis. There were no statistically significant differences comparing immunoglobulin levels between CVID patients with or without autoimmune manifestations. There was no statistical difference in CD3+, CD8+, CD4+CD25highCD127low T, CD19, CD19hiCD21loCD38lo, and follicular T helper cell counts in CVID patients with or without autoimmune disorders. In conclusion, autoimmune manifestations often affect patients with CVID. Early recognition and tailored treatment of these conditions are pivotal to ensure a better quality of life and the reduction of CVID associated complications.
Real-life evidence of low-dose mepolizumab efficacy in EGPA: a case series
Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare, small vessel, necrotizing vasculitis. The disease is mainly characterized by hypereosinophilia and asthma with frequent sinonasal involvement, although multiple organs can be affected, including the heart, lungs, skin, gastrointestinal tract, kidneys, and nervous system. IL-5 production is pathogenetically central for the development of the disease by promoting proliferation, transvascular migration and functional activation of eosinophils. The degree of blood and tissue eosinophilia appears to be associated with disease pathogenesis and eosinophil depletion represents a promising treatment approach for EGPA. We prospectively evaluated the efficacy and safety of a low dose (100 mg q4w), 12-month course of mepolizumab, an anti-IL-5 monoclonal antibody, in eight patients with severe asthma and active EGPA. Patients were recruited by the tertiary care center of Clinical Immunology and Allergy, University of Naples Federico II. The following outcomes were assessed before (T0), and after 6 (T6) and 12 months (T12) of mepolizumab treatment: Birmingham Vasculitis Activity Score (BVAS), prednisone intake, Sino-Nasal Outcome Test (SNOT-22), Total Endoscopic Polyp Score (TENPS), Asthma Control Test (ACT), Forced Expiratory Volume one second (FEV1)%, blood eosinophilia. BVAS score significantly decreased showing a sharp reduction in disease activity score. Clinical improvements in terms of sinonasal scores and asthma symptoms were observed, in parallel with a drastic drop in eosinophil blood count. Prednisone intake was significantly reduced. In two patients, asthma exacerbations led to discontinuation in mepolizumab therapy after 6 and 12 months despite BVAS reduction. Mepolizumab treatment was well tolerated, and no severe adverse drug effects were registered. In conclusion, our 12-month real-life study suggests that mepolizumab may be beneficial and safe in active EGPA patients by improving disease activity score, sinonasal and asthma outcomes while reducing the burden of prednisone intake.