Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
26
result(s) for
"Spangenberg, Douglas"
Sort by:
Properties of small cirrus ice crystals from commercial aircraft measurements and implications for flight operations
2015
Measurements of cloud ice crystal size distributions have been made by a backscatter cloud probe (BCP) mounted on five commercial airliners flying international routes that cross five continents. Bulk cloud parameters were also derived from the size distributions. As of 31 December 2014, a total of 4399 flights had accumulated data from 665 hours in more than 19 000 cirrus clouds larger than 5 km in length. The BCP measures the equivalent optical diameter (EOD) of individual crystals in the 5-90 µm range from which size distributions are derived and recorded every 4 seconds. The cirrus cloud property database, an ongoing development stemming from these measurements, registers the total crystal number and mass concentration, effective and median volume diameters and extinction coefficients derived from the size distribution. This information is accompanied by the environmental temperature, pressure, aircraft position, date and time of each sample. The seasonal variations of the cirrus cloud properties measured from 2012 to 2014 are determined for six geographic regions in the tropics and extratropics. Number concentrations range from a few per litre for thin cirrus to several hundreds of thousands for heavy cirrus. Temperatures range from 205 to 250 K and effective radii from 12 to 20 µm. A comparison of the regional and seasonal number and mass size distributions, and the bulk microphysical properties derived from them, demonstrates that cirrus properties cannot be easily parameterised by temperature or by latitude. The seasonal changes in the size distributions from the extratropical Atlantic and Eurasian air routes are distinctly different, showing shifts from mono-modal to bi-modal spectra out of phase with one another. This phase difference may be linked to the timing of deep convection and cold fronts that lead to the cirrus formation. Likewise, the size spectra of cirrus over the tropical Atlantic and Eastern Brazil differ from each other although they were measured in adjoining regions. The cirrus crystals in the maritime continental tropical region over Malaysia form tri-modal spectra that are not found in any of the other regions measured by the IAGOS aircraft so far, a feature that is possibly linked to biomass burning or dust. Frequent measurements of ice crystal concentrations greater than 1×10
5
L
−1
, often accompanied by anomalously warm temperature and erratic airspeed readings, suggest that aircraft often experience conditions that affect their sensors. This new instrument, if used operationally, has the potential of providing real-time and valuable information to assist in flight operations as well as providing real-time information for along-track nowcasting.
Journal Article
Evaluation of satellite-based upper troposphere cloud top height retrievals in multilayer cloud conditions during TC4
by
McGill, Matthew J.
,
Minnis, Patrick
,
Ayers, J. Kirk
in
Absorption
,
Atmospheric sciences
,
Carbon dioxide
2010
Upper troposphere cloud top heights (CTHs), restricted to cloud top pressures (CTPs) less than 500 hPa, inferred using four satellite retrieval methods applied to Twelfth Geostationary Operational Environmental Satellite (GOES-12) data are evaluated using measurements during the July August 2007 Tropical Composition, Cloud and Climate Coupling Experiment (TC4). The four methods are the single-layer CO2-absorption technique (SCO2AT), a modified CO2-absorption technique (MCO2AT) developed for improving both single-layered and multilayered cloud retrievals, a standard version of the Visible Infrared Solar-infrared Split-window Technique (old VISST), and a new version of VISST (new VISST) recently developed to improve cloud property retrievals. They are evaluated by comparing with ER-2 aircraft-based Cloud Physics Lidar (CPL) data taken during 9 days having extensive upper troposphere cirrus, anvil, and convective clouds. Compared to the 89% coverage by upper tropospheric clouds detected by the CPL, the SCO2AT, MCO2AT, old VISST, and new VISST retrieved CTPs less than 500 hPa in 76, 76, 69, and 74% of the matched pixels, respectively. Most of the differences are due to subvisible and optically thin cirrus clouds occurring near the tropopause that were detected only by the CPL. The mean upper tropospheric CTHs for the 9 days are 14.2 (+/- 2.1) km from the CPL and 10.7 (+/- 2.1), 12.1 (+/- 1.6), 9.7 (+/- 2.9), and 11.4 (+/- 2.8) km from the SCO2AT, MCO2AT, old VISST, and new VISST, respectively. Compared to the CPL, the MCO2AT CTHs had the smallest mean biases for semitransparent high clouds in both single-layered and multilayered situations whereas the new VISST CTHs had the smallest mean biases when upper clouds were opaque and optically thick. The biases for all techniques increased with increasing numbers of cloud layers. The transparency of the upper layer clouds tends to increase with the numbers of cloud layers.
Journal Article
Comparison of GOES-retrieved and in situ measurements of deep convective anvil cloud microphysical properties during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4)
2010
One of the main goals of the Tropical Composition, Cloud and Climate Coupling Experiment (TC(sup 4)) during July and August 2007 was to gain a better understanding of the formation and life cycle of cirrus clouds in the upper troposphere and lower stratosphere and how their presence affects the exchange of water vapor between these layers. Additionally, it is important to compare in situ measurements taken by aircraft instruments with products derived from satellite observations and find a meaningful way to interpret the results. In this study, cloud properties derived using radiance measurements from the Geostationary Operational Environmental Satellite (GOES) imagers are compared to similar quantities from aircraft in situ observations and are examined for meaningful relationships. A new method using dual \\angle satellite measurements is used to derive the ice water content (IWC) for the top portion of deep convective clouds and anvils. The results show the in situ and remotely sensed mean microphysical properties agree to within approx.10 microns in the top few kilometers of thick anvils despite the vastly different temporal and spatial resolutions of the aircraft and satellite instruments. Mean particle size and IWC are shown to increase with decreasing altitude in the top few kilometers of the cloud. Given these relationships, it may be possible to derive parameterizations for effective particle size and IWC as a function of altitude from satellite observations
Journal Article
An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin
by
Segal-Rozenhaimer, Michal
,
Holben, Brent N.
,
Redemann, Jens
in
Aerosol absorption
,
Aerosol effects
,
Aerosol particles
2021
Southern Africa produces almost a third of the Earth’s biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA EVS-2 (Earth Venture Suborbital-2) investigation with three intensive observation periods designed to study key atmospheric processes that determine the climate impacts
of these aerosols. During the Southern Hemisphere winter and spring (June–October), aerosol particles reaching 3–5 km in altitude are transported westward over the southeast Atlantic, where they interact with one of the largest subtropical stratocumulus (Sc) cloud decks in the world. The representation of these interactions in climate models remains highly uncertain in part due to a scarcity of observational constraints on aerosol and cloud properties, as well
as due to the parameterized treatment of physical processes. Three ORACLES deployments by the NASA P-3 aircraft in September 2016, August 2017, and October 2018 (totaling ~ 350 science flight hours), augmented by the deployment of the NASA ER-2 aircraft for remote sensing in September 2016 (totaling ~ 100 science flight hours), were intended to help fill this observational gap. ORACLES focuses on three fundamental science themes centered on the climate effects of African BB aerosols: (a) direct aerosol radiative effects, (b) effects of aerosol absorption on atmospheric circulation and clouds, and (c) aerosol–cloud microphysical interactions. This paper summarizes the ORACLES science objectives, describes the project implementation, provides an overview of the flights and measurements in each deployment, and highlights the integrative modeling efforts from cloud to global scales to address science objectives. Significant new findings on the vertical structure of BB aerosol physical and chemical properties, chemical aging, cloud condensation nuclei, rain and precipitation statistics, and aerosol indirect effects are emphasized, but their detailed descriptions are the subject of separate publications. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project and the dataset it produced.
Journal Article
Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal
by
Chiu, J. Christine
,
Marshak, Alexander
,
Palm, Stephen P.
in
Alternative energy sources
,
Background radiation
,
Calibration
2008
Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other spaceborne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so one must first calibrate the reflected solar radiation received by the photon-counting detectors of the GLAS 532-nm channel, the primary channel for atmospheric products. Solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (i) calibration with coincident airborne and GLAS observations, (ii) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds, and (iii) calibration from first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
Journal Article
The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) measurement campaign
by
Coe, Hugh
,
Bower, Keith N.
,
Davies, Nicholas
in
Aerosol effects
,
Aerosol properties
,
Aerosol-cloud interactions
2021
The representations of clouds, aerosols, and cloud–aerosol–radiation impacts remain some of the largest uncertainties in climate change, limiting our ability to accurately reconstruct past climate and predict future climate. The south-east Atlantic is a region where high atmospheric aerosol loadings and semi-permanent stratocumulus clouds are co-located, providing an optimum region for studying the full range of aerosol–radiation and aerosol–cloud interactions and their perturbations of the Earth's radiation budget. While satellite measurements have provided some useful insights into aerosol–radiation and aerosol–cloud interactions over the region, these observations do not have the spatial and temporal resolution, nor the required level of precision to allow for a process-level assessment. Detailed measurements from high spatial and temporal resolution airborne atmospheric measurements in the region are very sparse, limiting their use in assessing the performance of aerosol modelling in numerical weather prediction and climate models. CLARIFY-2017 was a major consortium programme consisting of five principal UK universities with project partners from the UK Met Office and European- and USA-based universities and research centres involved in the complementary ORACLES, LASIC, and AEROCLO-sA projects. The aims of CLARIFY-2017 were fourfold: (1) to improve the representation and reduce uncertainty in model estimates of the direct, semi-direct, and indirect radiative effect of absorbing biomass burning aerosols; (2) to improve our knowledge and representation of the processes determining stratocumulus cloud microphysical and radiative properties and their transition to cumulus regimes; (3) to challenge, validate, and improve satellite retrievals of cloud and aerosol properties and their radiative impacts; (4) to improve the impacts of aerosols in weather and climate numerical models. This paper describes the modelling and measurement strategies central to the CLARIFY-2017 deployment of the FAAM BAe146 instrumented aircraft campaign, summarizes the flight objectives and flight patterns, and highlights some key results from our initial analyses.
Journal Article
A modified method for inferring upper troposphere cloud top height using the GOES 12 imager 10.7 and 13.3 μm data
by
Minnis, Patrick
,
Lin, Bing
,
Palikonda, Rabindra
in
cloud top height
,
CO2 absorption technique
,
multilayer cloud
2010
Passive satellite retrievals using conventional CO2 absorption techniques tend to systematically underestimate the upper transmissive cloud top heights (CTHs). These techniques are based on single‐layer assumptions that the upper cloud occupies a geometrically thin layer above a cloud‐free surface. This study presents a new modified CO2 absorption technique (MCO2AT) to improve the inference of transmissive CTHs in the upper troposphere above 600 hPa. The MCO2AT employs an iterative algorithm that starts with a single‐layer CO2 absorption technique (SCO2AT) followed by an iterative procedure to retrieve an enhanced upper CTH based on inferred effective background radiances. Both techniques are applied to the 10.7 and 13.3 μm channel data of the Twelfth Geostationary Operational Environmental Satellite (GOES 12) imager and their retrievals of upper tropospheric CTHs are compared with two active sensing products: the ground‐based Active Remotely Sensed Cloud Location (ARSCL) products from the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site and the satellite‐based Cloud Aerosol Lidar With Orthogonal Polarization (CALIOP) products. On average, the CTHs from MCO2AT and SCO2AT are lower than those from both of the active sensors by ∼1 and 2.4 km, respectively, possibly due to the different sensitivities and spatial resolutions between passive and active sensors. Preliminary validation of the new modified method is encouraging, especially the improvements for upper transmissive clouds in geometrically thick and/or multilayered cloud situations. The development of the modified method is particularly useful for sensors like the GOES 12, Meteosat‐9, and others, which carry only one CO2 absorption channel at ∼13.3 μm.
Journal Article
Evaluation of satellite retrievals of liquid clouds from the GOES-13 imager and MODIS over the midlatitude North Atlantic during the NAAMES campaign
2021
Satellite retrievals of cloud droplet effective radius (re) and optical depth (τ) from the Thirteenth Geostationary Operational Environmental Satellite (GOES-13) and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua and Terra, based on the Clouds and the Earth's Radiant Energy System (CERES) project algorithms, are evaluated with airborne data collected over the midlatitude boundary layer during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). The airborne dataset comprises in situ re from the Cloud Droplet Probe (CDP) and remotely sensed re and τ from the airborne Research Scanning Polarimeter (RSP). GOES-13 and MODIS (Aqua and Terra) re values are systematically greater than those from the CDP and RSP by at least 4.8 (GOES-13) and 1.7 µm (MODIS) despite relatively high linear correlation coefficients (r=0.52–0.68). In contrast, the satellite τ underestimates its RSP counterpart by −3.0, with r=0.76–0.77. Overall, MODIS yields better agreement with airborne data than GOES-13, with biases consistent with those reported for subtropical stratocumulus clouds. While the negative bias in satellite τ is mostly due to the retrievals having been collected in highly heterogeneous cloud scenes, the causes for the positive bias in satellite re, especially for GOES-13, are more complex. Although the high viewing zenith angle (∼65∘) and coarser pixel resolution for GOES-13 could explain a re bias of at least 0.7 µm, the higher GOES-13 re bias relative to that from MODIS is likely rooted in other factors. In this regard, a near-monotonic increase was also observed in GOES-13 re up to 1.0 µm with the satellite scattering angle (Θ) over the angular range 116–165∘; that is, re increases toward the backscattering direction. Understanding the variations of re with Θ will require the combined use of theoretical computations along with intercomparisons of satellite retrievals derived from sensors with dissimilar viewing geometry.
Journal Article
Northern Hemisphere contrail properties derived from Terra and Aqua MODIS data for 2006 and 2012
by
Chee, Thad
,
Minnis, Patrick
,
Khlopenkov, Konstantin
in
Air traffic
,
Air traffic control
,
Algorithms
2019
Linear contrail coverage, optical property, and radiative forcing data over the Northern Hemisphere (NH) are derived from a year (2012) of Terra and Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) imagery and compared with previously published 2006 results (Duda et al., 2013; Bedka et al., 2013; Spangenberg et al., 2013) using a consistent retrieval methodology. Differences in the observed Terra-minus-Aqua screened contrail coverage and patterns in the 2012 annual-mean air traffic estimated with respect to satellite overpass time suggest that most contrails detected by the contrail detection algorithm (CDA) form approximately 2 h before overpass time. The 2012 screened NH contrail coverage (Mask B) shows a relative 3 % increase compared to 2006 data for Terra and increases by almost 7 % for Aqua, although the differences are not expected to be statistically significant. A new post-processing algorithm added to the contrail mask processing estimated that the total contrail cirrus coverage visible in the MODIS imagery may be 3 to 4 times larger than the linear contrail coverage detected by the CDA. This estimate is similar in magnitude to the spreading factor estimated by Minnis et al. (2013). Contrail property retrievals of the 2012 data indicate that both contrail optical depth and contrail effective diameter decreased approximately 10 % between 2006 and 2012. The decreases may be attributed to better background cloudiness characterization, changes in the waypoint screening, or changes in contrail temperature. The total mean contrail radiative forcings (TCRFs) for all 2012 Terra observations were −6.3, 14.3, and 8.0 mW m−2 for the shortwave (SWCRF), longwave (LWCRF), and net forcings, respectively. These values are approximately 20 % less than the corresponding 2006 Terra estimates. The decline in TCRF results from the decrease in normalized CRF, partially offset by the 3 % increase in overall contrail coverage in 2012. The TCRFs for 2012 Aqua are similar, −6.4, 15.5, and 9.0 mW m−2 for shortwave, longwave, and net radiative forcing. The strong correlation between the relative changes in both total SWCRF and LWCRF between 2006 and 2012 and the corresponding relative changes in screened contrail coverage over each air traffic region suggests that regional changes in TCRF from year to year are dominated by year-to-year changes in contrail coverage over each area.
Journal Article
Spatially-Coordinated Airborne Data and Complementary Products for Aerosol, Gas, Cloud, and Meteorological Studies: the Nasa Activate Dataset
by
Chemyakin, Eduard V
,
Moore, Richard H
,
Cook, Anthony L
in
Aerosol clouds
,
Aerosol particles
,
Aerosol research
2023
The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol–cloud–meteorology interactions, with applications extending from process-based studies to multi-scale model intercomparison and improvement as well as to remote-sensing algorithm assessments and advancements. ACTIVATE used two NASA Langley Research Center aircraft, a HU-25 Falcon and King Air, to conduct systematic and spatially coordinated flights over the northwest Atlantic Ocean, resulting in 162 joint flights and 17 other single-aircraft flights between 2020 and 2022 across all seasons. Data cover 574 and 592 cumulative flights hours for the HU-25 Falcon and King Air, respectively. The HU-25 Falcon conducted profiling at different level legs below, in, and just above boundary layer clouds (< 3 km) and obtained in situ measurements of trace gases, aerosol particles, clouds, and atmospheric state parameters. Under cloud-free conditions, the HU-25 Falcon similarly conducted profiling at different level legs within and immediately above the boundary layer. The King Air (the high-flying aircraft) flew at approximately ∼ 9 km and conducted remote sensing with a lidar and polarimeter while also launching dropsondes (785 in total). Collectively, simultaneous data from both aircraft help to characterize the same vertical column of the atmosphere. In addition to individual instrument files, data from the HU-25 Falcon aircraft are combined into “merge files” on the publicly available data archive that are created at different time resolutions of interest (e.g., 1, 5, 10, 15, 30, 60 s, or matching an individual data product's start and stop times). This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes. The data are publicly accessible through https://doi.org/10.5067/SUBORBITAL/ACTIVATE/DATA001 (ACTIVATE Science Team, 2020).
Journal Article