Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
30 result(s) for "Speck, Scott"
Sort by:
A tritrophic plant-insect-pathogen system used to develop a closely linked Rag2 and Rsv1-h recombinant haplotype in double-resistant soybean germplasm
Background The colocalization of two resistance ( R ) genes on chromosome 13 of soybean ( Glycine max (L.) Merrill) that confer resistance against the soybean aphid ( Aphis glycines ) and soybean mosaic virus (SMV) gives rise to a very unique R-avr tritrophic incompatible interaction system that goes across biological kingdoms. In this tritrophic system, the insect is the only natural vector of the virus and soybean is a host-plant for both pests/pathogen. The almost unavoidable co-evolution of pathogen-vector with that of the R -genes in soybean plants through an endless arms race to avoid each other’s defense-attack mechanisms raises interesting questions. The objectives of this work were to ( i ) develop double-resistant recombinant inbred lines (RILs) with a Rag2-Rsv1-h gene haplotype in coupling phase using resistance alleles from two different genetic sources (PI 243540 (Rag2) and Suweon 97 (Rsv1-h) ), ( ii ) confirm phenotypically the resistant reaction against both pests in double-resistant RILs, and ( iii ) dissect the Rag2-Rsv1-h region with molecular markers and investigate the potential for structural variation. Results We observed a recombination event in identified double-resistant F 3:5 RILs in a region of chromosome 13 ca. 21 kb long (between positions 30,297,227 and 30,318,949 in Wm82.a2.v1) that lies between the reported locations of the Rsv1-h and Rag2 genes (29,815,463--29,912,369 and 30,412,581--30,466,533 intervals, respectively, based on Wm82.a2.v1), indicating the double-resistant haplotype is in coupling phase. The tight LD estimates obtained between haplotype markers underscored the physical proximity of the two resistance genes. Only 10 recombinant haplotype classes (excluding double heterozygotes) were observed among the 51 that were possible with a four loci haplotype. The 10 recombinant classes represented 15 out of 192 screened individuals. A joint SMV-aphid phenotypic greenhouse screen allowed us to identify the best aphid biotype 1 and SMV-G1, double resistant haplotype class in recombinant progeny. Our molecular marker results agree with previous fine-mapping reports and preclude the presence of resistance genes other than Rag2 and Rsv1-h in double-resistant RILs. A comparative genomic hybridization analysis revealed no obvious structural variants in the region. Conclusions To our knowledge, this is the first report of double-resistant Rag2-Rsv1-h soybean RILs that used a plant-insect-pathogen tritrophic system for germplasm enhancement. The co-occurrence of Rag and Rsv genes in a region that clusters resistance genes on chromosome 13 may be a unique feature of domesticated soybean. The recombinant genotypes will be useful in breeding to develop soybean cultivars with resistance to both the vector and the virus. The parental and recombinant genotypes may be helpful in future studies to elucidate interesting evolutionary questions regarding vector, host, and virus tritrophic systems.
RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition
The pronecrotic kinase, receptor interacting protein (RIP1, also called RIPK1) mediates programmed necrosis and, together with its partner, RIP3 (RIPK3), drives midgestational death of caspase 8 (Casp8)-deficient embryos. RIP1 controls a second vital step in mammalian development immediately after birth, the mechanism of which remains unresolved. Rip1 ⁻/⁻ mice display perinatal lethality, accompanied by gross immune system abnormalities. Here we show that RIP1 K45A (kinase dead) knockin mice develop normally into adulthood, indicating that development does not require RIP1 kinase activity. In the face of complete RIP1 deficiency, cells develop sensitivity to RIP3-mixed lineage kinase domain-like–mediated necroptosis as well as to Casp8-mediated apoptosis activated by diverse innate immune stimuli (e.g., TNF, IFN, double-stranded RNA). When either RIP3 or Casp8 is disrupted in combination with RIP1, the resulting double knockout mice exhibit slightly prolonged survival over RIP1-deficient animals. Surprisingly, triple knockout mice with combined RIP1, RIP3, and Casp8 deficiency develop into viable and fertile adults, with the capacity to produce normal levels of myeloid and lymphoid lineage cells. Despite the combined deficiency, these mice sustain a functional immune system that responds robustly to viral challenge. A single allele of Rip3 is tolerated in Rip1 ⁻/⁻Casp8 ⁻/⁻Rip3 ⁺/⁻ mice, contrasting the need to eliminate both alleles of either Rip1 or Rip3 to rescue midgestational death of Casp8 -deficient mice. These observations reveal a vital kinase-independent role for RIP1 in preventing pronecrotic as well as proapoptotic signaling events associated with life-threatening innate immune activation at the time of mammalian parturition.
Controlling the speed and trajectory of evolution with counterdiabatic driving
The pace and unpredictability of evolution are critically relevant in a variety of modern challenges, such as combating drug resistance in pathogens and cancer, understanding how species respond to environmental perturbations like climate change and developing artificial selection approaches for agriculture. Great progress has been made in quantitative modelling of evolution using fitness landscapes, allowing a degree of prediction for future evolutionary histories. Yet fine-grained control of the speed and distributions of these trajectories remains elusive. We propose an approach to achieve this using ideas originally developed in a completely different context—counterdiabatic driving to control the behaviour of quantum states for applications like quantum computing and manipulating ultracold atoms. Implementing these ideas for the first time in a biological context, we show how a set of external control parameters (that is, varying drug concentrations and types, temperature and nutrients) can guide the probability distribution of genotypes in a population along a specified path and time interval. This level of control, allowing empirical optimization of evolutionary speed and trajectories, has myriad potential applications, from enhancing adaptive therapies for diseases to the development of thermotolerant crops in preparation for climate change, to accelerating bioengineering methods built on evolutionary models, like directed evolution of biomolecules.The unpredictability of evolution makes it difficult to deal with drug resistance because over the course of a treatment there may be mutations that we cannot predict. The authors propose to use quantum methods to control the speed and distribution of potential evolutionary outcomes.
Endotoxin in concentrated coarse and fine ambient particles induces acute systemic inflammation in controlled human exposures
Background Knowledge of the inhalable particulate matter components responsible for health effects is important for developing targeted regulation. Objectives In a double-blind randomised cross-over trial of controlled human exposures to concentrated ambient particles (CAPs) and their endotoxin and (1→3)-β-D-glucan components, we evaluated acute inflammatory responses. Methods 35 healthy adults were exposed to five 130-min exposures at rest: (1) fine CAPs (∼250 µg/m3); (2) coarse CAPs (∼200 µg/m3); (3) second coarse CAPs (∼200 µg/m3); (4) filtered air; and (5) medical air. Induced sputum cell counts were measured at screening and 24 h postexposure. Venous blood total leucocytes, neutrophils, interleukin-6 and high-sensitivity C reactive protein (CRP) were measured pre-exposure, 3 and 24 h postexposure. Results Relative to filtered air, an increase in blood leucocytes 24 h (but not 3 h) postexposure was significantly associated with coarse (estimate=0.44×109 cells/L (95% CI 0.01 to 0.88); n=132) and fine CAPs (0.68×109 cells /L (95% CI 0.19 to 1.17); n=132), but not medical air. Similar associations were found with neutrophil responses. An interquartile increase in endotoxin (5.4 ng/m3) was significantly associated with increased blood leucocytes 3 h postexposure (0.27×109 cells/L (95% CI 0.03 to 0.51); n=98) and 24 h postexposure (0.37×109 cells/L (95% CI 0.12 to 0.63); n=98). This endotoxin effect did not differ by particle size. There were no associations with glucan concentrations or interleukin-6, CRP or sputum responses. Conclusions In healthy adults, controlled coarse and fine ambient particle exposures independently induced acute systemic inflammatory responses. Endotoxin contributes to the inflammatory role of particle air pollution.
A Tissue Culture Model of Murine Gammaherpesvirus Replication Reveals Roles for the Viral Cyclin in Both Virus Replication and Egress from Infected Cells
Passage through the eukaryotic cell cycle is regulated by the activity of cyclins and their cyclin-dependent kinase partners. Rhadinoviruses, such as Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68), encode a viral homologue of mammalian D-type cyclins. In MHV68, the interaction of the viral cyclin with its CDK partners is important for acute replication in the lungs following low dose inoculation. Attempts to further study this requirement in vitro have been limited by the lack of available tissue culture models that mimic the growth defect observed in vivo. It is hypothesized that analysis of virus replication in a cell line that displays properties of primary airway epithelium, such as the ability to polarize, might provide a suitable environment to characterize the role of the v-cyclin in virus replication. We report here MHV68 replication in the rat lung cell line RL-65, a non-transformed polarizable epithelial cell line. These analyses reveal a role for the v-cyclin in both virus replication, as well as virus egress from infected cells. As observed for acute replication in vivo, efficient replication in RL-65 cells requires CDK binding. However, we show that the KSHV v-cyclin (K-cyclin), which utilizes different CDK partners (CDK4 and CDK6) than the MHV68 v-cyclin (CDK2 and CDC2), can partially rescue the replication defect observed with a v-cyclin null mutant--both in vitro and in vivo. Finally, we show that MHV68 is shed from both the apical and basolateral surfaces of polarized RL-65 cells. In summary, the RL-65 cell line provides an attractive in vitro model that mimics critical aspects of MHV68 replication in the lungs.
Unbiased Mutagenesis of MHV68 LANA Reveals a DNA-Binding Domain Required for LANA Function In Vitro and In Vivo
The Latency-Associated Nuclear Antigen (LANA), encoded by ORF73, is a conserved gene among the γ2-herpesviruses (rhadinoviruses). The Kaposi's Sarcoma-Associated Herpesvirus (KSHV) LANA is consistently expressed in KSHV-associated malignancies. In the case of the rodent γ2-herpesvirus, murine gammaherpesvirus 68 (MHV68), the LANA homolog (mLANA) is required for efficient virus replication, reactivation from latency and immortalization of murine fetal liver-derived B cells. To gain insights into mLANA function(s), knowing that KSHV LANA binds DNA and can modulate transcription of a variety of promoters, we sought out and identified a mLANA-responsive promoter which maps to the terminal repeat (TR) of MHV68. Notably, mLANA strongly repressed activity from this promoter. We extended these analyses to demonstrate direct, sequence-specific binding of recombinant mLANA to TR DNA by DNase I footprinting. To assess whether the DNA-binding and/or transcription modulating function is important in the known mLANA phenotypes, we generated an unbiased library of mLANA point mutants using error-prone PCR, and screened a large panel of mutants for repression of the mLANA-responsive promoter to identify loss of function mutants. Notably, among the mutant mLANA proteins recovered, many of the mutations are in a predicted EBNA-1-like DNA-binding domain. Consistent with this prediction, those tested displayed loss of DNA binding activity. We engineered six of these mLANA mutants into the MHV68 genome and tested the resulting mutant viruses for: (i) replication fitness; (ii) efficiency of latency establishment; and (iii) reactivation from latency. Interestingly, each of these mLANA-mutant viruses exhibited phenotypes similar to the mLANA-null mutant virus, indicating that DNA-binding is critical for mLANA function.
Effects of Ambient Coarse, Fine, and Ultrafine Particles and Their Biological Constituents on Systemic Biomarkers: A Controlled Human Exposure Study
Ambient coarse, fine, and ultrafine particles have been associated with mortality and morbidity. Few studies have compared how various particle size fractions affect systemic biomarkers. We examined changes of blood and urinary biomarkers following exposures to three particle sizes. Fifty healthy nonsmoking volunteers, mean age of 28 years, were exposed to coarse (2.5-10 μm; mean, 213 μg/m3) and fine (0.15-2.5 μm; mean, 238 μg/m3) concentrated ambient particles (CAPs), and filtered ambient and/or medical air. Twenty-five participants were exposed to ultrafine CAP (< 0.3 μm; mean, 136 μg/m3) and filtered medical air. Exposures lasted 130 min, separated by ≥ 2 weeks. Blood/urine samples were collected preexposure and 1 hr and 21 hr postexposure to determine blood interleukin-6 and C-reactive protein (inflammation), endothelin-1 and vascular endothelial growth factor (VEGF; vascular mediators), and malondialdehyde (lipid peroxidation); as well as urinary VEGF, 8-hydroxy-deoxy-guanosine (DNA oxidation), and malondialdehyde. Mixed-model regressions assessed pre- and postexposure differences. One hour postexposure, for every 100-μg/m3 increase, coarse CAP was associated with increased blood VEGF (2.41 pg/mL; 95% CI: 0.41, 4.40) in models adjusted for O3, fine CAP with increased urinary malondialdehyde in single- (0.31 nmol/mg creatinine; 95% CI: 0.02, 0.60) and two-pollutant models, and ultrafine CAP with increased urinary 8-hydroxydeoxyguanosine in single- (0.69 ng/mg creatinine; 95% CI: 0.09, 1.29) and two-pollutant models, lasting < 21 hr. Endotoxin was significantly associated with biomarker changes similar to those found with CAPs. Ambient particles with various sizes/constituents may influence systemic biomarkers differently. Endotoxin in ambient particles may contribute to vascular mediator changes and oxidative stress.
CHD7 and Runx1 interaction provides a braking mechanism for hematopoietic differentiation
Hematopoietic stem and progenitor cell (HSPC) formation and lineage differentiation involve gene expression programs orchestrated by transcription factors and epigenetic regulators. Genetic disruption of the chromatin remodeler chromodomain-helicase-DNA-binding protein 7 (CHD7) expanded phenotypic HSPCs, erythroid, and myeloid lineages in zebrafish and mouse embryos. CHD7 acts to suppress hematopoietic differentiation. Binding motifs for RUNX and other hematopoietic transcription factors are enriched at sites occupied by CHD7, and decreased RUNX1 occupancy correlated with loss of CHD7 localization. CHD7 physically interacts with RUNX1 and suppresses RUNX1-induced expansion of HSPCs during development through modulation of RUNX1 activity. Consequently, the RUNX1:CHD7 axis provides proper timing and function of HSPCs as they emerge during hematopoietic development or mature in adults, representing a distinct and evolutionarily conserved control mechanism to ensure accurate hematopoietic lineage differentiation.
Mechanistic insights into G-protein coupling with an agonist-bound G-protein-coupled receptor
G-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by promoting guanine nucleotide exchange. Here, we investigate the coupling of G proteins with GPCRs and describe the events that ultimately lead to the ejection of GDP from its binding pocket in the Gα subunit, the rate-limiting step during G-protein activation. Using molecular dynamics simulations, we investigate the temporal progression of structural rearrangements of GDP-bound G s protein (G s ·GDP; hereafter G s GDP ) upon coupling to the β 2 -adrenergic receptor (β 2 AR) in atomic detail. The binding of G s GDP to the β 2 AR is followed by long-range allosteric effects that significantly reduce the energy needed for GDP release: the opening of α1-αF helices, the displacement of the αG helix and the opening of the α-helical domain. Signal propagation to the G s occurs through an extended receptor interface, including a lysine-rich motif at the intracellular end of a kinked transmembrane helix 6, which was confirmed by site-directed mutagenesis and functional assays. From this β 2 AR–G s GDP intermediate, G s undergoes an in-plane rotation along the receptor axis to approach the β 2 AR–G s empty state. The simulations shed light on how the structural elements at the receptor–G-protein interface may interact to transmit the signal over 30 Å to the nucleotide-binding site. Our analysis extends the current limited view of nucleotide-free snapshots to include additional states and structural features responsible for signaling and G-protein coupling specificity. Using molecular dynamics simulations and functional assays, authors track the structural changes in heterotrimeric G proteins in response to receptor coupling that lead to the ejection of GDP, the rate-limiting step during G-protein activation.