Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
81
result(s) for
"Spence, Katherine"
Sort by:
A Detailed Mammosphere Assay Protocol for the Quantification of Breast Stem Cell Activity
by
Clarke, Robert B.
,
Ablett, Matthew P.
,
Simões, Bruno M.
in
Animals
,
Breast Neoplasms - pathology
,
Cancer Research
2012
Since the discovery that neural tissue contains a population of stem cells that form neurospheres in vitro, sphere-forming assays have been adapted for use with a number of different tissue types for the quantification of stem cell activity and self-renewal. One tissue type widely used for stem cell investigations is mammary tissue, and the mammosphere assay has been used in both normal tissue and cancer. Although it is a relatively simple assay to learn, it can be difficult to master. There are methodological and analytical aspects to the assay which require careful consideration when interpreting the results. We describe here a detailed mammosphere assay protocol for the assessment of stem cell activity and self-renewal, and discuss how data generated by the assay can be analysed and interpreted.
Journal Article
Wnt Pathway Activity in Breast Cancer Sub-Types and Stem-Like Cells
2013
Wnt signalling has been implicated in stem cell regulation however its role in breast cancer stem cell regulation remains unclear.
We used a panel of normal and breast cancer cell lines to assess Wnt pathway gene and protein expression, and for the investigation of Wnt signalling within stem cell-enriched populations, mRNA and protein expression was analysed after the selection of anoikis-resistant cells. Finally, cell lines and patient-derived samples were used to investigate Wnt pathway effects on stem cell activity in vitro.
Wnt pathway signalling increased in cancer compared to normal breast and in both cell lines and patient samples, expression of Wnt pathway genes correlated with estrogen receptor (ER) expression. Furthermore, specific Wnt pathway genes were predictive for recurrence within subtypes of breast cancer. Canonical Wnt pathway genes were increased in breast cancer stem cell-enriched populations in comparison to normal breast stem cell-enriched populations. Furthermore in cell lines, the ligand Wnt3a increased whilst the inhibitor DKK1 reduced mammosphere formation with the greatest inhibitory effects observed in ER+ve breast cancer cell lines. In patient-derived metastatic breast cancer samples, only ER-ve mammospheres were responsive to the ligand Wnt3a. However, the inhibitor DKK1 efficiently inhibited both ER+ve and ER-ve breast cancer but not normal mammosphere formation, suggesting that the Wnt pathway is aberrantly activated in breast cancer mammospheres.
Collectively, these data highlight differential Wnt signalling in breast cancer subtypes and activity in patient-derived metastatic cancer stem-like cells indicating a potential for Wnt-targeted treatment in breast cancers.
Journal Article
Targeting STAT3 signaling using stabilised sulforaphane (SFX-01) inhibits endocrine resistant stem-like cells in ER-positive breast cancer
by
Simões, Bruno M
,
Lovell, Scott
,
Morisset Ludivine
in
Aldehyde dehydrogenase
,
Breast cancer
,
Endocrine therapy
2020
Estrogen receptor (ER) positive breast cancer is frequently sensitive to endocrine therapy. Multiple mechanisms of endocrine therapy resistance have been identified, including cancer stem-like cell (CSC) activity. Here we investigate SFX-01, a stabilised formulation of sulforaphane (SFN), for its effects on breast CSC activity in ER+ preclinical models. SFX‐01 reduced mammosphere formation efficiency (MFE) of ER+ primary and metastatic patient samples. Both tamoxifen and fulvestrant increased MFE and aldehyde dehydrogenase (ALDH) activity of patient-derived xenograft (PDX) tumors, which was reversed by combination with SFX‐01. SFX-01 significantly reduced tumor-initiating cell frequency in secondary transplants and reduced the formation of spontaneous lung micrometastases by PDX tumors in mice. Mechanistically, we establish that both tamoxifen and fulvestrant induce STAT3 phosphorylation. SFX-01 suppressed phospho‐STAT3 and SFN directly bound STAT3 in patient and PDX samples. Analysis of ALDH+ cells from endocrine-resistant patient samples revealed activation of STAT3 target genes MUC1 and OSMR, which were inhibited by SFX-01 in patient samples. Increased expression of these genes after 3 months’ endocrine treatment of ER+ patients (n = 68) predicted poor prognosis. Our data establish the importance of STAT3 signaling in CSC-mediated resistance to endocrine therapy and the potential of SFX-01 for improving clinical outcomes in ER+ breast cancer.
Journal Article
Intermittent energy restriction induces changes in breast gene expression and systemic metabolism
2016
Background
Observational studies suggest weight loss and energy restriction reduce breast cancer risk. Intermittent energy restriction (IER) reduces weight to the same extent as, or more than equivalent continuous energy restriction (CER) but the effects of IER on normal breast tissue and systemic metabolism as indicators of breast cancer risk are unknown.
Methods
We assessed the effect of IER (two days of 65 % energy restriction per week) for one menstrual cycle on breast tissue gene expression using Affymetrix GeneChips, adipocyte size by morphometry, and systemic metabolism (insulin resistance, lipids, serum and urine metabolites, lymphocyte gene expression) in 23 overweight premenopausal women at high risk of breast cancer. Unsupervised and supervised analyses of matched pre and post IER biopsies in 20 subjects were performed, whilst liquid and gas chromatography mass spectrometry assessed corresponding changes in serum and urine metabolites in all subjects after the two restricted and five unrestricted days of the IER.
Results
Women lost 4.8 % (±2.0 %) of body weight and 8.0 % (±5.0 %) of total body fat. Insulin resistance (homeostatic model assessment (HOMA)) reduced by 29.8 % (±17.8 %) on the restricted days and by 11 % (±34 %) on the unrestricted days of the IER. Five hundred and twenty-seven metabolites significantly increased or decreased during the two restricted days of IER. Ninety-one percent of these returned to baseline after 5 days of normal eating. Eleven subjects (55 %) displayed reductions in energy restriction-associated metabolic gene pathways including lipid synthesis, gluconeogenesis and glycogen synthesis. Some of these women also had increases in genes associated with breast epithelial cell differentiation (secretoglobulins, milk proteins and mucins) and decreased collagen synthesis (TNMD, PCOLCE2, TIMP4). There was no appreciable effect of IER on breast gene expression in the other nine subjects. These groups did not differ in the degree of changes in weight, total body fat, fat cell size or serum or urine metabolomic markers. Corresponding gene changes were not seen in peripheral blood lymphocytes.
Conclusion
The transcriptional response to IER is variable in breast tissue, which was not reflected in the systemic response, which occurred in all subjects. The mechanisms of breast responsiveness/non-responsiveness require further investigation.
Trial registration
ISRCTN77916487
31/07/2012.
Journal Article
Lack of caveolin-1 (P132L) somatic mutations in breast cancer
by
Clarke, Robert B.
,
Newman, William G.
,
Ferraldeschi, Roberta
in
Breast cancer
,
Breast Neoplasms - genetics
,
Breast Neoplasms - pathology
2012
Issue Title: Special Issue: Translational goals of neoadjuvant therapy
Journal Article
Proteomics of Patient-derived Breast Tumours Identifies a Pro-migratory Osteomodulin-Cyclin Dependent Kinase 1 Axis which Drives Bone Metastasis
2023
Breast cancer remains a leading cause of mortality, predominantly due to the development of metastases to vital organs. At present, predictive biomarkers of organ specific metastasis and therapies targeted to the metastatic niche are limited. Here, to identify the molecular determinants of breast cancer metastasis we analysed patient-derived breast tumours by combining quantitative proteomics, bioinformatics, and functional assays in vitro and in vivo. We identified elevated levels of the protein Osteomodulin (OMD) associated with breast cancer bone metastases in patient-derived samples. OMD overexpression in the breast cancer MDA-MB-231 cell model significantly increases cell migration in vitro and promotes the formation of bone metastases in vivo. Phosphoproteomics analysis of MDA-MB-231 cells expressing OMD identifies active Cyclin-dependent kinase 1 (CDK1) downstream of OMD. The importance of the OMD-CDK1 axis was validated using two independent phosphoproteomics datasets analysing patient-derived breast cancer samples. We also show that the OMD-CDK1 axis drives cell migration and cell viability in vitro and the formation of bone metastases in vivo. Finally, CDK1 inhibition reduces in vitro cell viability of an independent cohort of metastatic patient samples showing high CDK1 activity. Therefore, the OMD-CDK1 axis will determine which breast cancer patients develop bone metastases and is a therapeutic target to treat or prevent breast cancer bone metastases.Competing Interest StatementThe authors have declared no competing interest.
Targeting STAT3 signalling using stabilised sulforaphane (SFX-01) inhibits endocrine resistant stem-like cells in ER-positive breast cancer
by
Lovell, Scott
,
Sims, Andrew H
,
Howell, Sacha J
in
Aldehyde dehydrogenase
,
Breast cancer
,
Cancer Biology
2020
PURPOSE: Estrogen receptor (ER) positive breast cancer is frequently sensitive to endocrine therapy. Multiple mechanisms of endocrine therapy resistance have been identified, including cancer stem-like cell (CSC) activity. Sulforaphane (SFN) has previously been shown to target CSCs but its mechanism of action is unclear. Here we investigate SFX-01, a stabilised formulation of SFN, for its effects on breast CSC activity in ER+ preclinical models and to study its mechanism. EXPERIMENTAL DESIGN: CSC activity was measured by mammosphere formation efficiency (MFE), aldehyde dehydrogenase (ALDH) activity, and tumor formation using patient samples and patient-derived xenograft (PDX) tumors treated with SFX-01 alone or in combination with tamoxifen or fulvestrant. Gene expression and SFN target proteins in treated samples were assessed. RESULTS: SFX-01 reduced MFE of both ER+ primary and metastatic patient samples. Both tamoxifen and fulvestrant increased MFE and ALDH activity of PDX tumors, which was reversed by combination with SFX-01. SFX-01 significantly reduced tumor initiating cell frequency in secondary transplants at limiting dilution and reduced the formation of spontaneous lung micrometastases by PDX tumors in mice. Mechanistically, we establish that both tamoxifen and fulvestrant induce STAT3 phosphorylation. SFX-01 suppressed phospho-STAT3 and SFN directly bound STAT3 in patient and PDX samples. Analysis of ALDH+ cells from endocrine-resistant patient samples revealed activation of STAT3 target genes MUC1 and OSMR, which were inhibited by SFX-01 in patient samples. Increased expression of these genes after 3 months' endocrine treatment of ER+ patients (n=68) predicted poor prognosis. CONCLUSIONS: Our data establish the importance of STAT3 signaling in CSC-mediated resistance to endocrine therapy and the potential of SFX-01 for improving clinical outcomes in ER+ breast cancer.
Class of 2014
2014
Johanna Schmeer Royal College of Art Design Interactions Two school girls in pleated skirts are taking selfies in front of Bioplastic Fantastic, a human-sized, bright, white cocoon with playthings - part prosthetic, part massive microorganism, part sex toy. KS THE JUDGES ALEX ARESTIS is associate director at Publica and co-leads a design unit at the University of Brighton EDDIE BLAKE is an architect and founding member of Studio Weave KEVIN HALEY is a co-founder and director of Aberrant Architecture and a lecturer at the Royal College of Art ADAM HILES works at London-based practice Duggan Morris Architects KRISTIAN HYDE is a design director at Swansea and Cardiff-based Hyde + Hyde Architects HOLLY LEWIS is a founding member of We Made That and visiting critic to the Bartlett School of Architecture HUGH MCEWEN is a partner at the architectural practice Office S&M and tutors at Oxford Brookes University STEVE PARNELL is an architect and architecture critic.
Magazine Article
Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche
2017
The control of biophysical cues during the culture of human pluripotent stem cells on biomaterial substrates can be used to replicate the
in vivo
amniogenic environment and direct
in vitro
generation of early human amniotic tissue.
Amniogenesis—the development of amnion—is a critical developmental milestone for early human embryogenesis and successful pregnancy
1
,
2
. However, human amniogenesis is poorly understood due to limited accessibility to peri-implantation embryos and a lack of
in vitro
models. Here we report an efficient biomaterial system to generate human amnion-like tissue
in vitro
through self-organized development of human pluripotent stem cells (hPSCs) in a bioengineered niche mimicking the
in vivo
implantation environment. We show that biophysical niche factors act as a switch to toggle hPSC self-renewal versus amniogenesis under self-renewal-permissive biochemical conditions. We identify a unique molecular signature of hPSC-derived amnion-like cells and show that endogenously activated BMP–SMAD signalling is required for the amnion-like tissue development by hPSCs. This study unveils the self-organizing and mechanosensitive nature of human amniogenesis and establishes the first hPSC-based model for investigating peri-implantation human amnion development, thereby helping advance human embryology and reproductive medicine.
Journal Article