Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
28 result(s) for "Spiegel, Heide"
Sort by:
Optimizing Carbon Sequestration in Croplands: A Synthesis
Climate change and ensuring food security for an exponentially growing global human population are the greatest challenges for future agriculture. Improved soil management practices are crucial to tackle these problems by enhancing agro-ecosystem productivity, soil fertility, and carbon sequestration. To meet Paris climate treaty pledges, soil management must address validated approaches for carbon sequestration and stabilization. The present synthesis assesses a range of current and potential future agricultural management practices (AMP) that have an effect on soil organic carbon (SOC) storage and sequestration. Through two strategies—increasing carbon inputs (e.g., enhanced primary production, organic fertilizers) and reducing SOC losses (e.g., reducing soil erosion, managing soil respiration)—AMP can either sequester, up to 714 ± 404 (compost) kg C ha−1 y−1, having no distinct impact (mineral fertilization), or even reduce SOC stocks in the topsoil (bare fallow). Overall, the carbon sequestration potential of the subsoil (>40 cm) requires further investigation. Moreover, climate change, permanent soil sealing, consumer behavior in dietary habits and waste production, as well as the socio-economic constraints of farmers (e.g., information exchange, long-term economic profitability) are important factors for implementing new AMPs. This calls for life-cycle assessments of those practices.
Diffusive gradients in thin films predicts crop response better than calcium-acetate-lactate extraction
Soil P testing has been widely used to predict crop yields, P uptake, and fertilizer demands in agriculture. Diffusive gradients in thin films (DGT) provides a zero-sink soil P test which mimics diffusion-controlled plant uptake and has previously been found to predict P availability to crops better than conventional quantity-based P tests in highly weathered Australian, though not in European soils. Here we tested the performance of DGT and the Austrian and German standard P quantity test calcium acetate lactate (CAL) to explain the variation of crop yield and P uptake response of winter wheat ( Triticum aestivum L.) and spring barley ( Hordeum vulgare L.) in long-term P fertilization experiments at four different sites in eastern Austria. Phosphorus extracted with DGT (P-DGT) and CAL (P-CAL) correlated well in similar soils but not across sites with large variation in soil and site properties such as carbonate equivalent and water availability. The predictive power of DGT for barley (R 2  = 0.42) and wheat grain yield (R 2  = 0.32), and P uptake in wheat grains (R 2  = 0.36) was clearly superior to that of the CAL, and less dependent on soil properties. The better performance of DGT compared to the quantity test is consistent with diffusion-limited P uptake in the water-limited cultivated soils of eastern Austria. The critical values of P deficiency derived from the Mitscherlich-type fits for barley and wheat at 80% relative yield are 64.9 and 26.2 µg L −1 , respectively, consistent with differential P demands of the crops.
European survey shows poor association between soil organic matter and crop yields
A number of policies proposed to increase soil organic matter (SOM) content in agricultural land as a carbon sink and to enhance soil fertility. Relations between SOM content and crop yields however remain uncertain. In a recent farm survey across six European countries, farmers reported both their crop yields and their SOM content. For four widely grown crops (wheat, grain maize, sugar beet and potato), correlations were explored between reported crop yields and SOM content (N = 1264). To explain observed variability, climate, soil texture, slope, tillage intensity, fertilisation and irrigation were added as co-variables in a linear regression model. No consistent correlations were observed for any of the crop types. For wheat, a significant positive correlation ( p  < 0.05) was observed between SOM and crop yields in the Continental climate, with yields being on average 263 ± 4 (95% CI) kg ha −1 higher on soils with one percentage point more SOM. In the Atlantic climate, a significant negative correlation was observed for wheat, with yields being on average 75 ± 2 (95%CI) kg ha −1 lower on soils with one percentage point more SOM ( p  < 0.05). For sugar beet, a significant positive correlation ( p  < 0.05) between SOM and crop yields was suggested for all climate zones, but this depended on a number of relatively low yield observations. For potatoes and maize, no significant correlations were observed between SOM content and crop yields. These findings indicate the need for a diversified strategy across soil types, crops and climates when seeking farmers’ support to increase SOM.
Managing Soils for Recovering from the COVID-19 Pandemic
The COVID-19 pandemic has disrupted the global food supply chain and exacerbated the problem of food and nutritional insecurity. Here we outline soil strategies to strengthen local food production systems, enhance their resilience, and create a circular economy focused on soil restoration through carbon sequestration, on-farm cycling of nutrients, minimizing environmental pollution, and contamination of food. Smart web-based geospatial decision support systems (S-DSSs) for land use planning and management is a useful tool for sustainable development. Forensic soil science can also contribute to cold case investigations, both in providing intelligence and evidence in court and in ascertaining the provenance and safety of food products. Soil can be used for the safe disposal of medical waste, but increased understanding is needed on the transfer of virus through pedosphere processes. Strengthening communication between soil scientists and policy makers and improving distance learning techniques are critical for the post-COVID restoration.
Sustainable agricultural soil management in Austria: tasks, knowledge needs, challenges and barriers
Im Rahmen des Programms EJP Soil wurden die Ansichten und Meinungen verschiedener Interessengruppen zu nachhaltigem land-wirtschaftlichem Bodenmanagement mithilfe eines Online-Fragebogens erhoben. Die Ergebnisse zeigen die Sichtweisen der Interessengruppen und drängendsten Probleme auf, etwa die Bedeutung des Wissensaustauschs, der Bedarf an mehr finanziellen Mitteln für die Umsetzung klimafreundlicher Bewirtschaftungspraktiken und die Verabschiedung angemessener Gesetze und Richtlinien. Als wichtigste Herausforderungen nannten alle Interessengruppen die Vermeidung von Bodenerosion, die Erhaltung bzw. Erhöhung des organischen Kohlenstoffs im Boden, die Vermeidung von Bodenversiegelung, sowie die Schaffung einer optimalen Bodenstruktur. Bei einigen Themen gab es deutliche Unterschiede zwischen den Interessengruppen, was auf unterschiedliche Wissensstände, Perspektiven und Schwerpunkte zurückzuführen ist (z. B. lag der Fokus der Landwirte eher auf Produktivität und wirtschaftlichem Fortbestand, während sich Wissenschaftler eher für das Bodenprofil interessierten oder Emissionen zu messen oder zu berechnen). Insgesamt wurde deutlich, dass der enorme Reichtum an verfügbarem Wissen stärker und effektiver verbreitet werden muss. Dazu sind neue und innovative Kommunikationsansätze erforderlich.
A Field-Scale Decision Support System for Assessment and Management of Soil Functions
Agricultural decision support systems (DSS) are mostly focused on increasing the supply of individual soil functions such as e.g. primary productivity or nutrient cycling, while neglecting other important soil functions, such as e.g. water purification and regulation, climate regulation and carbon sequestration, soil biodiversity and habitat provision. Making right management decisions for long-term sustainability is therefore challenging, and farmers and farm advisors would greatly benefit from an evidence-based DSS targeted for assessing and improving the supply of several soil functions simultaneously. To address this, need we designed the Soil Navigator DSS by applying a qualitative approach to multi criteria decision modelling using Decision Expert (DEX) integrative methodology. Multi-criteria decision models for the five main soil functions were developed, calibrated and validated using knowledge of involved domain experts and knowledge extracted from existing datasets by data mining. Subsequently, the five DEX models were integrated into a DSS to assess the soil functions simultaneously, and to provide management advises for improving the performance of prioritized soil functions. To enable communication between the users and the DSS, we developed a user-friendly computer-based graphical user interface, which enables users to provide the required data regarding their field to the DSS and to get textual and graphical results about the performance of each of the five soil functions in a qualitative way. The final output from the DSS is a list of soil mitigation measures that the end-users could easily apply in the field in order to achieve the desired soil function performance. The Soil Navigator DSS has a great potential to complement the Farm Sustainability Tools for Nutrients included in the Common Agricultural Policy 2021-2027 proposal adopted by the European Commission. The Soil Navigator has also a potential to be spatially upgraded to assist decisions on which soil functions to prioritize in a specific region or member state. Furthermore, the Soil Navigator DSS could be used as an educational tool for farmers, farm advisors and students, and its potential should be further exploited for the benefit of farmers and the society as a whole.
Effects of two decades of organic and mineral fertilization of arable crops on earthworms and standardized litter decomposition
Organic fertilization has been shown to benefit soil biota. A field experiment was established in 1991 at the AGES experimental research station Ritzlhof to investigate the effects of long-term fertilization on soil biota and crop yields. Experimental plots were cultivated using a crop rotation with maize, wheat, barley, and pea. Eight treatments consisted of compost application (urban organic waste, green waste, cattle manure, and sewage sludge compost). Composts were applied exclusively (organic) or amended with mineral nitrogen (N) fertilizers (80 kg N ha−1, organic-mineral) and compared to 0 (control) and mineral (40, 80, and 120 kg N ha−1) fertilization. Earthworm activity and biomass, litter decomposition, crop growth, and yield parameters were investigated under winter barley (Hordeum vulgare L.) in 2014 after uniform mineral fertilization and 1.5 years after the last compost application. Earthworm activity was significantly increased under long-term organic-mineral fertilization compared to the control, whereas earthworm biomass was unaffected by compost application. Litter decomposition rate was highest in the control. Only barley stem growth was affected by fertilization, whereas other barley parameters including yield were unaffected. The results showed that long-term fertilization affects soil biota even if compost is not applied every year.
Long-Term Fertilization Affects Soil Microbiota, Improves Yield and Benefits Soil
Fertilization of soil is needed to fulfill the growing demand for livestock feed and human food requirements. However, fertilization has short and long-term impacts on the soil microbiota. These, in turn, may influence plant viability and growth. We investigated the soil microbiota of a 27-year field trial, focusing on the influences of mineral nitrogen (N) fertilization, different composts and combinations of compost plus mineral N as soil amendments. Two N rates (0 and 80 kg per ha) and four different composts (urban organic waste compost (OWC) green waste compost (GC), farmyard manure (MC) compost and sewage sludge compost (SSC)) were used. Soil samples for this study were taken in 2018 after the growing season of maize. In addition to maize yield, the effects on soil physicochemical properties and the soil microbiota were analyzed. There was a trend for increased maize yields for all fertilizers; however, only the application of GC and SSC in combination with mineral N fertilizer showed significant effects. The different organic amendments influenced physicochemical soil properties. Phosphorus concentrations were three times higher in plots receiving SSC (≈312 mg kg−1) and SSC + N (≈297 mg kg−1) than control (≈89 mg kg−1) or mineral N fertilizer (≈97 mg kg−1) alone. Magnesium concentrations in plots treated with SSC (≈74 mg kg−1) were lower compared to soils treated with GC and MC, respectively (≈135 mg kg−1 and 126 mg kg−1). Bacteria exceeded the fungal community in terms of both richness and diversity. While the bacterial community composition differed significantly among the treatments, the fungal community composition was rather unaffected. Our conclusion is that composts produced from various substrates serve as valuable nutrient sources for plants and can partially substitute mineral N. In addition, composts increased soil microbial biomass and modulated the composition of the soil’s microbial community.
Data on yield and soil parameters of three diverse tilled long-term experimental sites in Austria (2018–2022)
The agroecological “Marchfeld” cluster assessed the impact of tillage on primary production (yield) and selected soil parameters at three sites (two conventionally and one organically managed) from 2018–2022. The data were uniformly compiled in a data set. The examined factors were no, minimum (5–8 cm), reduced (10–15 cm) and conventional (25–30 cm) tillage. All measured parameters were documented in a state-of-the-art quality control approach and stored in the data set. The long-term experimental (LTER) sites have been operating for a long time (from 6–34 years), so that our parameters show accumulated historical developments that influence the present. The data is available for (re)use by others (scientists, stakeholders, etc.) on Zenodo for meta-analyses, process modelling and other environmental studies.
Biomass Ash as a Substitute for Lime and Its Impact on Grassland Soil, Forage, and Soil Microbiota
In this eight-year grassland field trial, we compared the fertilization effects of biomass ashes (BMAs) and carbonated lime (CaCO3) in combined application with cattle slurry (CS). Our study focused on plant coverage, forage yield, and quality, as well as soil physicochemical and microbiological properties. The fertilization strategies included CS mixed with BMA or CaCO3 applied three times a year and a separate annual application of ash or CaCO3, independent of CS. Samplings were performed in 2010, 2014, and 2018. Despite an absence of observable effects on soil, microbial properties, and forage quality, CS application, with or without BMA/CaCO3, resulted in higher forage yields compared to the unfertilized control and plots receiving only ash or CaCO3. Forage properties remained consistent across treatments. However, the combined application of CS with both ash and CaCO3 led to a reduction in volatile organic compounds, total carbon, total nitrogen, nitrate, and electrical conductivity in the soil from 2010 to 2018. Additionally, the relative abundance of specific microbial families (Nitrosomonadaceae, Acidothermaceae, Bacillaceae, and Peptostreptococcaceae) varied based on whether soils received a single amendment or a combination thereof. Our findings suggest that BMA is a valuable substitute for traditional liming agents, regardless of the application mode.