Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Spielman, Derek"
Sort by:
Angiostrongylus cantonensis: a review of its distribution, molecular biology and clinical significance as a human pathogen
Angiostrongylus cantonensis is a metastrongyloid nematode found widely in the Asia-Pacific region, and the aetiological agent of angiostrongyliasis; a disease characterized by eosinophilic meningitis. Rattus rats are definitive hosts of A. cantonensis, while intermediate hosts include terrestrial and aquatic molluscs. Humans are dead-end hosts that usually become infected upon ingestion of infected molluscs. A presumptive diagnosis is often made based on clinical features, a history of mollusc consumption, eosinophilic pleocytosis in cerebral spinal fluid, and advanced imaging such as computed tomography. Serological tests are available for angiostrongyliasis, though many tests are still under development. While there is no treatment consensus, therapy often includes a combination of anthelmintics and corticosteroids. Angiostrongyliasis is relatively rare, but is often associated with morbidity and sometimes mortality. Recent reports suggest the parasites’ range is increasing, leading to fatalities in regions previously considered Angiostrongylus-free, and sometimes, delayed diagnosis in newly invaded regions. Increased awareness of angiostrongyliasis would facilitate rapid diagnosis and improved clinical outcomes. This paper summarizes knowledge on the parasites’ life cycle, clinical aspects and epidemiology. The molecular biology of Angiostrongylus spp. is also discussed. Attention is paid to the significance of angiostrongyliasis in Australia, given the recent severe cases reported from the Sydney region.
Targeted Inactivation of Dipeptidyl Peptidase 9 Enzymatic Activity Causes Mouse Neonate Lethality
Dipeptidyl Peptidase (DPP) 4 and related dipeptidyl peptidases are emerging as current and potential therapeutic targets. DPP9 is an intracellular protease that is regulated by redox status and by SUMO1. DPP9 can influence antigen processing, epidermal growth factor (EGF)-mediated signaling and tumor biology. We made the first gene knock-in (gki) mouse with a serine to alanine point mutation at the DPP9 active site (S729A). Weaned heterozygote DPP9 (wt/S729A) pups from 110 intercrosses were indistinguishable from wild-type littermates. No homozygote DPP9 (S729A/S729A) weaned mice were detected. DPP9 (S729A/S729A) homozygote embryos, which were morphologically indistinguishable from their wild-type littermate embryos at embryonic day (ED) 12.5 to ED 17.5, were born live but these neonates died within 8 to 24 hours of birth. All neonates suckled and contained milk spots and were of similar body weight. No gender differences were seen. No histological or DPP9 immunostaining pattern differences were seen between genotypes in embryos and neonates. Mouse embryonic fibroblasts (MEFs) from DPP9 (S729A/S729A) ED13.5 embryos and neonate DPP9 (S729A/S729A) mouse livers collected within 6 hours after birth had levels of DPP9 protein and DPP9-related proteases that were similar to wild-type but had less DPP9/DPP8-derived activity. These data confirmed the absence of DPP9 enzymatic activity due to the presence of the serine to alanine mutation and no compensation from related proteases. These novel findings suggest that DPP9 enzymatic activity is essential for early neonatal survival in mice.
Most Species Are Not Driven to Extinction before Genetic Factors Impact Them
There is controversy concerning the role of genetic factors in species extinctions. Many authors have asserted that species are usually driven to extinction before genetic factors have time to impact them, but few studies have seriously addressed this issue. If this assertion is true, there will be little difference in genetic diversity between threatened and taxonomically related nonthreatened species. We compared average heterozygosities in 170 threatened taxa with those in taxonomically related nonthreatened taxa in a comprehensive metaanalysis. Heterozygosity was lower in threatened taxa in 77% of comparisons, a highly significant depature from the predictions of the no genetic impact hypothesis. Heterozygosity was on average 35% lower (median 40%) in threatened taxa than in related nonthreatened ones. These differences in heterozygosity indicate lowered evolutionary potential, compromised reproductive fitness, and elevated extinction risk in the wild. Independent evidence from stochastic computer projections has demonstrated that inbreeding depression elevates extinction risk for threatened species in natural habitats when all other threatening processes are included in the models. Thus, most taxa are not driven to extinction before genetic factors affect them adversely.
Twenty two cases of canine neural angiostronglyosis in eastern Australia (2002-2005) and a review of the literature
Doc number: 70 Abstract: Cases of canine neural angiostrongylosis (NA) with cerebrospinal fluid (CSF) evaluations in the peer-reviewed literature were tabulated. All cases were from Australia. A retrospective cohort of 59 dogs was contrasted with a series of 22 new cases where NA was diagnosed by the presence of both eosinophilic pleocytosis and anti-Angiostrongylus cantonensis immunloglobulins (IgG) in CSF, determined by ELISA or Western blot. Both cohorts were drawn from south east Queensland and Sydney. The retrospective cohort comprised mostly pups presented for hind limb weakness with hyperaesthesia, a mixture of upper motor neurone (UMN) and lower motor neurone (LMN) signs in the hind limbs and urinary incontinence. Signs were attributed to larval migration through peripheral nerves, nerve roots, spinal cord and brain associated with an ascending eosinophilic meningo-encephomyelitis. The contemporary cohort consisted of a mixture of pups, young adult and mature dogs, with a wider range of signs including (i) paraparesis/proprioceptive ataxia (ii) lumbar and tail base hyperaesthesia, (iii) multi-focal central nervous system dysfunction, or (iv) focal disease with neck pain, cranial neuropathy and altered mentation. Cases were seen throughout the year, most between April and July (inclusive). There was a preponderance of large breeds. Often littermates, or multiple animals from the same kennel, were affected simultaneously or sequentially. A presumptive diagnosis was based on consistent signs, proximity to rats, ingestion/chewing of slugs or snails and eosinophilic pleocytosis. NA was diagnosed by demonstrating anti-A. cantonensis IgG in CSF. Detecting anti-A. cantonensis IgG in serum was unhelpful because many normal dogs (20/21 lb dogs; 8/22 of a hospital population) had such antibodies, often at substantial titres. Most NA cases in the contemporary series (19/22) and many pups (16/38) in the retrospective cohort were managed successfully using high doses of prednisolone and opioids. Treatment often included antibiotics administered in case protozoan encephalomyelitis or translocated bacterial meningitis was present. Supportive measures included bladder care and physiotherapy. Several dogs were left with permanent neural deficits. Dogs are an important sentinel species for NA. Human cases and numerous cases in tawny frogmouths were reported from the same regions as affected dogs over the study period.
Gross, microscopic, radiologic, echocardiographic and haematological findings in rats experimentally infected with Angiostrongylus cantonensis
Although the gross and microscopic pathology in rats infected with Angiostrongylus cantonensis has been well described, corresponding changes detected using diagnostic imaging modalities have not been reported. This work describes the cardiopulmonary changes in mature Wistar rats chronically infected with moderate burdens of A. cantonensis using radiology, computed tomography (CT), CT angiography, echocardiography, necropsy and histological examinations. Haematology and coagulation studies were also performed. Thoracic radiography, CT and CT angiography showed moderately severe alveolar pulmonary patterns mainly affecting caudal portions of the caudal lung lobes and associated dilatation of the caudal lobar pulmonary arteries. Presumptive worm profiles could be detected using echocardiography, with worms seen in the right ventricular outflow tract or straddling either the pulmonary and/or the tricuspid valves. Extensive, multifocal, coalescing dark areas and multiple pale foci affecting the caudal lung lobes were observed at necropsy. Histologically, these were composed of numerous large, confluent granulomas and fibrotic nodules. Adult worms were found predominantly in the mid- to distal pulmonary arteries. An inflammatory leukogram, hyperproteinaemia and hyperfibrinogenaemia were found in most rats. These findings provide a comparative model for A. cantonensis in its accidental hosts, such as humans and dogs. In addition, the pathological and imaging changes are comparable to those seen in dogs infected with Angiostrongylus vasorum, suggesting rats infected with A. cantonensis could be a model for dogs with A. vasorum infection.
Does Inbreeding and Loss of Genetic Diversity Decrease Disease Resistance?
Inbreeding and loss of genetic diversity are predicted to decrease the resistance of species to disease. However, this issue is controversial and there is limited rigorous scientific evidence available. To test whether inbreeding and loss of genetic diversity affect a host's resistance to disease, Drosophila melanogasterpopulations with different levels of inbreeding and genetic diversity were exposed separately to (a) thuringiensin, an insecticidal toxin produced by some strains of Bacillus thuringiensis, and (b) live Serratia marcescensbacteria. Inbreeding and loss of genetic diversity significantly reduced resistance of D. melanogasterto both the thuringiensin toxin and live Serratia marcescens. For both, the best fitting relationships between resistance and inbreeding were curvilinear. As expected, there was wide variation among replicate inbred populations in disease resistance. Lowered resistances to both the toxin and the pathogen in inbred populations were due to specific resistance alleles, rather than generalized inbreeding effects, as correlations between resistance and population fitness were low or negative. Wildlife managers should strive to minimise inbreeding and loss of genetic diversity within threatened populations and to minimise exposure of inbred populations to disease.[PUBLICATION ABSTRACT]
Gone in the back legs
Neural angiostrongyliasis and neosporosis are the two most common infectious causes of spinal cord disease in young dogs. The former is caused by migration of Angiostrongylus cantonensis (rat lungworm) larvae following ingestion of mollusc intermediate hosts, while the latter is caused by the apicomplexan protozoan Neospora caninum, acquired transplacentally, during parturition or in the neonatal period. This article gives the reader the perspective of a veterinarian confronted with the diagnosis and treatment of these two potentially life-threatening infections, taking into account differences in epidemiology and pathogenesis, and listing diagnostic tests available and affordable for most owners. The broader implications of these infections for other species, including people and wildlife, are discussed.
Twenty two cases of canine neural angiostrongylosis in eastern Australia (2002-2005) and a review of the literature
Cases of canine neural angiostrongylosis (NA) with cerebrospinal fluid (CSF) evaluations in the peer-reviewed literature were tabulated. All cases were from Australia. A retrospective cohort of 59 dogs was contrasted with a series of 22 new cases where NA was diagnosed by the presence of both eosinophilic pleocytosis and anti- Angiostrongylus cantonensis immunloglobulins (IgG) in CSF, determined by ELISA or Western blot. Both cohorts were drawn from south east Queensland and Sydney. The retrospective cohort comprised mostly pups presented for hind limb weakness with hyperaesthesia, a mixture of upper motor neurone (UMN) and lower motor neurone (LMN) signs in the hind limbs and urinary incontinence. Signs were attributed to larval migration through peripheral nerves, nerve roots, spinal cord and brain associated with an ascending eosinophilic meningo-encephomyelitis. The contemporary cohort consisted of a mixture of pups, young adult and mature dogs, with a wider range of signs including (i) paraparesis/proprioceptive ataxia (ii) lumbar and tail base hyperaesthesia, (iii) multi-focal central nervous system dysfunction, or (iv) focal disease with neck pain, cranial neuropathy and altered mentation. Cases were seen throughout the year, most between April and July (inclusive). There was a preponderance of large breeds. Often littermates, or multiple animals from the same kennel, were affected simultaneously or sequentially. A presumptive diagnosis was based on consistent signs, proximity to rats, ingestion/chewing of slugs or snails and eosinophilic pleocytosis. NA was diagnosed by demonstrating anti- A. cantonensis IgG in CSF. Detecting anti- A. cantonensis IgG in serum was unhelpful because many normal dogs (20/21 pound dogs; 8/22 of a hospital population) had such antibodies, often at substantial titres. Most NA cases in the contemporary series (19/22) and many pups (16/38) in the retrospective cohort were managed successfully using high doses of prednisolone and opioids. Treatment often included antibiotics administered in case protozoan encephalomyelitis or translocated bacterial meningitis was present. Supportive measures included bladder care and physiotherapy. Several dogs were left with permanent neural deficits. Dogs are an important sentinel species for NA. Human cases and numerous cases in tawny frogmouths were reported from the same regions as affected dogs over the study period.
Faecal virome of the Australian grey-headed flying fox from urban/suburban environments contains novel coronaviruses, retroviruses and sapoviruses
Bats are important reservoirs for viruses of public health and veterinary concern. Virus studies in Australian bats usually target the families Paramyxoviridae, Coronaviridae and Rhabdoviridae, with little known about their overall virome composition. We used metatranscriptomic sequencing to characterise the faecal virome of grey-headed flying foxes from three colonies in urban/suburban locations from two Australian states. We identified viruses from three mammalian-infecting (Coronaviridae, Caliciviridae, Retroviridae) and one possible mammalian-infecting (Birnaviridae) family. Of particular interest were a novel bat betacoronavirus (subgenus Nobecovirus) and a novel bat sapovirus (Caliciviridae), the first identified in Australian bats, as well as a potentially exogenous retrovirus. The novel betacoronavirus was detected in two sampling locations 1,375 km apart and falls in a viral lineage likely with a long association with bats. This study highlights the utility of unbiased sequencing of faecal samples for identifying novel viruses and revealing broad-scale patterns of virus ecology and evolution.