Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
48
result(s) for
"Spindloe, C"
Sort by:
Phase transition lowering in dynamically compressed silicon
2019
Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the case for many ambient properties, as well as for higher-pressure behaviour under quasi-static loading. However, despite many decades of study, a detailed understanding of the response of silicon to rapid compression—such as that experienced under shock impact—remains elusive. Here, we combine a novel free-electron laser-based X-ray diffraction geometry with laser-driven compression to elucidate the importance of shear generated during shock compression on the occurrence of phase transitions. We observe lowering of the hydrostatic phase boundary in elemental silicon, an ideal model system for investigating high-strength materials, analogous to planetary constituents. Moreover, we unambiguously determine the onset of melting above 14 GPa, previously ascribed to a solid–solid phase transition, undetectable in the now conventional shocked diffraction geometry; transitions to the liquid state are expected to be ubiquitous in all systems at sufficiently high pressures and temperatures.
Journal Article
Stable laser-acceleration of high-flux proton beams with plasma collimation
by
Parisuaña, C.
,
Istokskaia, V.
,
Thomas, A. G. R.
in
639/766/1960/1135
,
639/766/1960/1137
,
Ambient temperature
2025
Laser-plasma acceleration of protons offers a compact, ultra-fast alternative to conventional acceleration techniques, and is being widely pursued for potential applications in medicine, industry and fundamental science. Creating a stable, collimated beam of protons at high repetition rates presents a key challenge. Here, we demonstrate the generation of multi-MeV proton beams from a fast-replenishing ambient-temperature liquid sheet. The beam has an unprecedentedly low divergence of 1° (≤20 mrad), resulting from magnetic self-guiding of the proton beam during propagation through a low density vapour. The proton beams, generated at a repetition rate of 5 Hz using only 190 mJ of laser energy, exhibit a hundred-fold increase in flux compared to beams from a solid target. Coupled with the high shot-to-shot stability of this source, this represents a crucial step towards applications.
Applications of laser-plasma accelerated protons in fundamental, applied and medical sciences crucially depend on the creation of stable collimated beams with high repetition rates. Here the authors demonstrate the generation of multi-MeV protons at 5 Hz, with low (degree-level) proton beam divergence from a laser pulse focused onto a water sheet target, potentially mitigating the need for beam capturing techniques.
Journal Article
A laser–plasma platform for photon–photon physics: the two photon Breit–Wheeler process
2021
We describe a laser–plasma platform for photon–photon collision experiments to measure fundamental quantum electrodynamic processes. As an example we describe using this platform to attempt to observe the linear Breit–Wheeler process. The platform has been developed using the Gemini laser facility at the Rutherford Appleton Laboratory. A laser Wakefield accelerator and a bremsstrahlung convertor are used to generate a collimated beam of photons with energies of hundreds of MeV, that collide with keV x-ray photons generated by a laser heated plasma target. To detect the pairs generated by the photon–photon collisions, a magnetic transport system has been developed which directs the pairs onto scintillation-based and hybrid silicon pixel single particle detectors (SPDs). We present commissioning results from an experimental campaign using this laser–plasma platform for photon–photon physics, demonstrating successful generation of both photon sources, characterisation of the magnetic transport system and calibration of the SPDs, and discuss the feasibility of this platform for the observation of the Breit–Wheeler process. The design of the platform will also serve as the basis for the investigation of strong-field quantum electrodynamic processes such as the nonlinear Breit–Wheeler and the Trident process, or eventually, photon–photon scattering.
Journal Article
Observations of pressure anisotropy effects within semi-collisional magnetized plasma bubbles
by
Danson, C. N.
,
Joglekar, A. S.
,
Gumbrell, E. T.
in
639/766/1960/1134
,
639/766/1960/1135
,
639/766/34/4124
2021
Magnetized plasma interactions are ubiquitous in astrophysical and laboratory plasmas. Various physical effects have been shown to be important within colliding plasma flows influenced by opposing magnetic fields, however, experimental verification of the mechanisms within the interaction region has remained elusive. Here we discuss a laser-plasma experiment whereby experimental results verify that Biermann battery generated magnetic fields are advected by Nernst flows and anisotropic pressure effects dominate these flows in a reconnection region. These fields are mapped using time-resolved proton probing in multiple directions. Various experimental, modelling and analytical techniques demonstrate the importance of anisotropic pressure in semi-collisional, high-
β
plasmas, causing a reduction in the magnitude of the reconnecting fields when compared to resistive processes. Anisotropic pressure dynamics are crucial in collisionless plasmas, but are often neglected in collisional plasmas. We show pressure anisotropy to be essential in maintaining the interaction layer, redistributing magnetic fields even for semi-collisional, high energy density physics (HEDP) regimes.
Magnetic fields can be reorganized by plasma flows and lead to effects such as magnetic reconnection. Here the authors explore the evolution of magnetized-plasma bubbles in a semi-collisional regime and the role of pressure anisotropy in influencing the flow of the laser-produced plasma.
Journal Article
Electron acceleration by wave turbulence in a magnetized plasma
2018
Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ1–3. Strong shocks are expected to accelerate particles to very high energies4–6; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool7,8. Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind9, a setting where electron acceleration via lower-hybrid waves is possible.
Journal Article
Automated control and optimization of laser-driven ion acceleration
by
Parisuaña, C.
,
Istokskaia, V.
,
Thomas, A. G. R.
in
Automatic control
,
Automation
,
Bayesian optimization
2023
The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimization. Here, an automated, HRR-compatible system produced high-fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimization of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources.
Journal Article
Versatile tape-drive target for high-repetition-rate laser-driven proton acceleration
by
Parisuaña, C.
,
Istokskaia, V.
,
Bourgeois, N.
in
Digital signal processors
,
Foils
,
High power lasers
2023
We present the development and characterization of a high-stability, multi-material, multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz. The tape surface position was measured to be stable on the sub-micrometre scale, compatible with the high-numerical aperture focusing geometries required to achieve relativistic intensity interactions with the pulse energy available in current multi-Hz and near-future higher repetition-rate lasers (
$>$
kHz). Long-term drift was characterized at 100 Hz demonstrating suitability for operation over extended periods. The target was continuously operated at up to 5 Hz in a recent experiment for 70,000 shots without intervention by the experimental team, with the exception of tape replacement, producing the largest data-set of relativistically intense laser–solid foil measurements to date. This tape drive provides robust targetry for the generation and study of high-repetition-rate ion beams using next-generation high-power laser systems, also enabling wider applications of laser-driven proton sources.
Journal Article
Probing warm dense lithium by inelastic X-ray scattering
by
Glenzer, S. H.
,
Koenig, M.
,
Neumayer, P.
in
Atomic
,
Classical and Continuum Physics
,
Complex Systems
2008
Warm dense matter is a complex and little-explored state that is characterized by temperatures usually associated with plasmas but at densities similar to solids. A combination of inelastic X-ray scattering and
ab initio
simulations enables insight into its structure and behaviour.
One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter
1
. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter
2
. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase
3
, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars
4
,
5
. Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and
ab initio
simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure.
Journal Article
Laboratory analogue of a supersonic accretion column in a binary star system
2016
Astrophysical flows exhibit rich behaviour resulting from the interplay of different forms of energy—gravitational, thermal, magnetic and radiative. For magnetic cataclysmic variable stars, material from a late, main sequence star is pulled onto a highly magnetized (
B
>10 MG) white dwarf. The magnetic field is sufficiently large to direct the flow as an accretion column onto the poles of the white dwarf, a star subclass known as AM Herculis. A stationary radiative shock is expected to form 100–1,000 km above the surface of the white dwarf, far too small to be resolved with current telescopes. Here we report the results of a laboratory experiment showing the evolution of a reverse shock when both ionization and radiative losses are important. We find that the stand-off position of the shock agrees with radiation hydrodynamic simulations and is consistent, when scaled to AM Herculis star systems, with theoretical predictions.
Stationary radiative shocks are expected to form above the surface of highly-magnetized white dwarves in binary systems, but this cannot be resolved by telescopes. Here, the authors report a laboratory experiment showing the evolution of a reverse shock when both ionization and radiative losses are important.
Journal Article
L-Shell X-Ray Conversion Yields for Laser-Irradiated Tin and Silver Foils
2022
We have employed the VULCAN laser facility to generate a laser plasma X-ray source for use in photoionization experiments. A nanosecond laser pulse with an intensity of order 1015 Wcm−2 was used to irradiate thin Ag or Sn foil targets coated onto a parylene substrate, and the L-shell emission in the 3.3–4.4 keV range was recorded for both the laser-irradiated and nonirradiated sides. Both the experimental and simulation results show higher laser to X-ray conversion yields for Ag compared with Sn, with our simulations indicating yields approximately a factor of two higher than those found in the experiments. Although detailed angular data were not available experimentally, the simulations indicate that the emission is quite isotropic on the laser-irradiated side but shows close to a cosine variation on the nonirradiated side of the target as seen experimentally in the previous work.
Journal Article