Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Spinola, Roberta"
Sort by:
Differential Yellow Fever Susceptibility in New World Nonhuman Primates, Comparison with Humans, and Implications for Surveillance
A major outbreak of yellow fever (YF) occurred in Brazil during 2016-2018. Epizootics in New World nonhuman primates are sentinel events for YF virus circulation. However, genus-specific susceptibilities and suitability for YF surveillance remain poorly understood. We obtained and compared epidemiologic, histopathologic, immunohistochemical, and molecular results from 93 human and 1,752 primate cases submitted during the recent YF outbreak in Brazil (2017), with the support of the Brazilian National YF Surveillance Program. We detected heterogeneous YF-associated profiles among the various genera of primates we analyzed. Alouatta primates were the most reliable sentinel; Sapajus and Callicebus primates had higher viral loads but lower proportional mortality rates. Callithrix primates were the least sensitive, showing lower viral loads, lower proportional mortality rates, and no demonstrable YF virus antigen or extensive lesions in liver, despite detectable viral RNA. These differences in susceptibility, viral load, and mortality rates should be considered in strategic surveillance of epizootics and control measures for YF.
Yellow fever epizootics in non-human primates, São Paulo state, Brazil, 2008-2009
Since 2000, the expansion of Sylvatic Yellow Fever (YF) has been observed in the southeast of Brazil, being detected in areas considered silent for decades. Epizootics in non-human primates (NHPs) are considered sentinel events for the detection of human cases. It is important to report epizootic events that could have impact on the conservation status of susceptible species. We describe the epizootics in NHPs, notified in state of São Paulo, Brazil, between September 2008 to August 2009. Ninety-one epizootic events, involving 147 animals, were reported in 36 counties. Samples were obtained from 65 animals (44.2%). Most of the epizootics (46.6%) were reported between March and April, the same period during which human cases of YF occurred in the state. Biological samples were collected from animals found dead and were sent to Instituto Adolfo Lutz, in São Paulo. Two samples, collected in two counties without an indication for YF vaccination, were positive for the virus. Another 48 animals were associated with YF by clinical-epidemiological linkage with laboratory confirmed cases. Because the disease in human and NHPs occurred in the same period, the detection of the virus in NHPs did not work as sentinel, but aided in the delineation of new areas of risk. Desde 2000, vem sendo observada a expansão da febre amarela (FA) no Sudeste do Brasil, sendo detectados casos em áreas consideradas silenciosas por décadas. Epizootias em primatas não humanos (NHPs) são considerados eventos sentinela para a detecção de casos humanos. É importante relatar eventos epizoóticos que podem ter impacto sobre o estado de conservação de espécies sensíveis. Descrevemos as epizootias, notificadas em NHPs no estado de São Paulo, Brasil, entre setembro de 2008 a agosto de 2009. Noventa e um eventos epizoóticos, envolvendo 147 animais, foram notificados em 36 municípios. As amostras foram obtidas a partir de 65 animais (44,2%). A maioria das epizootias (46,6%) foram registradas entre março e abril, no mesmo período no qual YF em que casos humanos ocorreram no estado. As amostras biológicas foram coletadas de animais encontrados mortos e enviadas ao Instituto Adolfo Lutz, em São Paulo. Duas amostras, coletadas em dois municípios, sem indicação para a vacinação de febre amarela, foram positivos para o vírus. Outros 48 animais foram associados com FA por vínculo clínico-epidemiológico com casos confirmados laboratorialmente. Devido a doença em humanos e NHPs terem ocorrido no mesmo período, a detecção do vírus em NHPs não funcionou como sentinela, mas ajudou no processo de delimitação de novas áreas de risco.
ISOLATION OF YELLOW FEVER VIRUS (YFV) FROM NATURALLY INFECTED Haemagogus (Conopostegus) leucocelaenus (DIPTERA, CULICIDAE) IN SÃO PAULO STATE, BRAZIL, 2009
After detecting the death of Howlers monkeys (genus Alouatta) and isolation of yellow fever virus (YFV) in Buri county, São Paulo, Brazil, an entomological research study in the field was started. A YFV strain was isolated from newborn Swiss mice and cultured cells of Aedes albopictus - C6/36, from a pool of six Haemagogus (Conopostegus) leucocelaenus (Hg. leucocelaenus) mosquitoes (Dyar & Shannon) collected at the study site. Virus RNA fragment was amplified by RT-PCR and sequenced. The MCC Tree generated showed that the isolated strain is related to the South American I genotype, in a monophyletic clade containing isolates from recent 2008-2010 epidemics and epizootics in Brazil. Statistical analysis commonly used were calculated to characterize the sample in relation to diversity and dominance and indicated a pattern of dominance of one or a few species. Hg. leucocelaenus was found infected in Rio Grande do Sul State as well. In São Paulo State, this is the first detection of YFV in Hg. leucocelaenus.
Isolation of yellow fever virus (YFV) from naturally infectied Haemagogus (Conopostegus) leucocelaenus (diptera, cukicudae) in São Paulo State, Brazil, 2009
After detecting the death of Howlers monkeys (genus Alouatta) and isolation of yellow fever virus (YFV) in Buri county, São Paulo, Brazil, an entomological research study in the field was started. A YFV strain was isolated from newborn Swiss mice and cultured cells of Aedes albopictus - C6/36, from a pool of six Haemagogus (Conopostegus) leucocelaenus (Hg. leucocelaenus) mosquitoes (Dyar & Shannon) collected at the study site. Virus RNA fragment was amplified by RT-PCR and sequenced. The MCC Tree generated showed that the isolated strain is related to the South American I genotype, in a monophyletic clade containing isolates from recent 2008-2010 epidemics and epizootics in Brazil. Statistical analysis commonly used were calculated to characterize the sample in relation to diversity and dominance and indicated a pattern of dominance of one or a few species. Hg. leucocelaenus was found infected in Rio Grande do Sul State as well. In São Paulo State, this is the first detection of YFV in Hg. leucocelaenus. Após a detecção de morte de macacos Bugios (gênero Alouatta) e isolamento do vírus da Febre Amarela (YFV) no município de Buri, Estado de São Paulo, Brasil, foi iniciada uma investigação entomológica em campo. Uma cepa de YFV foi isolada em camundongos recém-nascidos e cultura de células de Aedes albopictus - C6/36, a partir de um lote de seis mosquitos Haemagogus (Conopostegus) leucocelaenus (Hg leucocelaenus) Dyar & Shannon coletados no local de estudo. RNA do vírus foi amplificado por RT-PCR e seqüenciado. A topologia gerada indica que a cepa isolada está relacionada ao genótipo South American I, em clado monofilético englobando isolados recentes de epidemias e epizootias entre 2008 e 2009. Análises estatísticas geralmente usadas caracterizaram a amostra em relação à diversidade e dominância, indicando dominância relativa de uma ou poucas espécies. Hg. leucocelaenus foi detectado infectado também no Rio Grande do Sul. No Estado de São Paulo trata-se da primeira detecção do YFV em Hg leucocelaenus.
Yellow fever epizootics in non-human primates, São Paulo state, Brazil, 2008-2009 Epizootias de febre amarela em primatas não humanos no estado de São Paulo, Brasil, 2008-2009
Since 2000, the expansion of Sylvatic Yellow Fever (YF) has been observed in the southeast of Brazil, being detected in areas considered silent for decades. Epizootics in non-human primates (NHPs) are considered sentinel events for the detection of human cases. It is important to report epizootic events that could have impact on the conservation status of susceptible species. We describe the epizootics in NHPs, notified in state of São Paulo, Brazil, between September 2008 to August 2009. Ninety-one epizootic events, involving 147 animals, were reported in 36 counties. Samples were obtained from 65 animals (44.2%). Most of the epizootics (46.6%) were reported between March and April, the same period during which human cases of YF occurred in the state. Biological samples were collected from animals found dead and were sent to Instituto Adolfo Lutz, in São Paulo. Two samples, collected in two counties without an indication for YF vaccination, were positive for the virus. Another 48 animals were associated with YF by clinical-epidemiological linkage with laboratory confirmed cases. Because the disease in human and NHPs occurred in the same period, the detection of the virus in NHPs did not work as sentinel, but aided in the delineation of new areas of risk.Desde 2000, vem sendo observada a expansão da febre amarela (FA) no Sudeste do Brasil, sendo detectados casos em áreas consideradas silenciosas por décadas. Epizootias em primatas não humanos (NHPs) são considerados eventos sentinela para a detecção de casos humanos. É importante relatar eventos epizoóticos que podem ter impacto sobre o estado de conservação de espécies sensíveis. Descrevemos as epizootias, notificadas em NHPs no estado de São Paulo, Brasil, entre setembro de 2008 a agosto de 2009. Noventa e um eventos epizoóticos, envolvendo 147 animais, foram notificados em 36 municípios. As amostras foram obtidas a partir de 65 animais (44,2%). A maioria das epizootias (46,6%) foram registradas entre março e abril, no mesmo período no qual YF em que casos humanos ocorreram no estado. As amostras biológicas foram coletadas de animais encontrados mortos e enviadas ao Instituto Adolfo Lutz, em São Paulo. Duas amostras, coletadas em dois municípios, sem indicação para a vacinação de febre amarela, foram positivos para o vírus. Outros 48 animais foram associados com FA por vínculo clínico-epidemiológico com casos confirmados laboratorialmente. Devido a doença em humanos e NHPs terem ocorrido no mesmo período, a detecção do vírus em NHPs não funcionou como sentinela, mas ajudou no processo de delimitação de novas áreas de risco.
Genomic Surveillance of Yellow Fever Virus Epizootic in São Paulo, Brazil, 2016 – 2018
São Paulo (SP), a densely inhabited state in southeast Brazil that contains the fourth most populated city in the world, recently experienced its largest yellow fever virus (YFV) outbreak in decades. YFV does not normally circulate extensively in SP, so most people were unvaccinated when the outbreak began. Surveillance in non-human primates (NHPs) is important for determining the magnitude and geographic extent of an epizootic, thereby helping to evaluate the risk of YFV spillover to humans. Data from infected NHPs can give more accurate insights into YFV spread than when using data from human cases alone. To contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in SP, we generated and analysed virus genomic data and epizootic case data from NHP in SP. We report the occurrence of three spatiotemporally distinct phases of the outbreak in SP prior to February 2018. We generated 51 new virus genomes from YFV positive cases identified in 23 different municipalities in SP, mostly sampled from non-human primates between October 2016 and January 2018. Although we observe substantial heterogeneity in lineage dispersal velocities between phylogenetic branches, continuous phylogeographic analyses of generated YFV genomes suggest that YFV lineages spread in SP state at a mean rate of approximately 1km per day during all phases of the outbreak. Viral lineages from the first epizootic phase in northern SP subsequently dispersed towards the south of the state to cause the second and third epizootic phases there. This alters our understanding of how YFV was introduced into the densely populated south of SP state. Our results shed light on the sylvatic transmission of yellow fever in highly fragmented forested regions in SP state and highlight the importance of continued surveillance of zoonotic pathogens in sentinel species. Competing Interest Statement The authors have declared no competing interest.