Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "Sponheim, Caleb"
Sort by:
A comprehensive macaque fMRI pipeline and hierarchical atlas
•The NMT v2, a stereotaxically aligned symmetric macaque template, is introduced.•A new atlas (CHARM), defined on NMT v2, parcellates the cortex at six spatial scales.•AFNI's @animal_warper aligns and maps data between monkey anatomicals and templates.•AFNI's afni_proc.py facilitates monkey fMRI analysis with automated scripting and QC.•Demos of macaque task and resting state fMRI analysis with these tools are provided. Functional neuroimaging research in the non-human primate (NHP) has been advancing at a remarkable rate. The increase in available data establishes a need for robust analysis pipelines designed for NHP neuroimaging and accompanying template spaces to standardize the localization of neuroimaging results. Our group recently developed the NIMH Macaque Template (NMT), a high-resolution population average anatomical template and associated neuroimaging resources, providing researchers with a standard space for macaque neuroimaging . Here, we release NMT v2, which includes both symmetric and asymmetric templates in stereotaxic orientation, with improvements in spatial contrast, processing efficiency, and segmentation. We also introduce the Cortical Hierarchy Atlas of the Rhesus Macaque (CHARM), a hierarchical parcellation of the macaque cerebral cortex with varying degrees of detail. These tools have been integrated into the neuroimaging analysis software AFNI to provide a comprehensive and robust pipeline for fMRI processing, visualization and analysis of NHP data. AFNI's new @animal_warper program can be used to efficiently align anatomical scans to the NMT v2 space, and afni_proc.py integrates these results with full fMRI processing using macaque-specific parameters: from motion correction through regression modeling. Taken together, the NMT v2 and AFNI represent an all-in-one package for macaque functional neuroimaging analysis, as demonstrated with available demos for both task and resting state fMRI.
CIVET-Macaque: An automated pipeline for MRI-based cortical surface generation and cortical thickness in macaques
The MNI CIVET pipeline for automated extraction of cortical surfaces and evaluation of cortical thickness from in-vivo human MRI has been extended for processing macaque brains. Processing is performed based on the NIMH Macaque Template (NMT), as the reference template, with the anatomical parcellation of the surface following the D99 and CHARM atlases. The modifications needed to adapt CIVET to the macaque brain are detailed. Results have been obtained using CIVET-macaque to process the anatomical scans of the 31 macaques used to generate the NMT and another 95 macaques from the PRIME-DE initiative. It is anticipated that the open usage of CIVET-macaque will promote collaborative efforts in data collection and processing, sharing, and automated analyses from which the non-human primate brain imaging field will advance.
Microstimulation of human somatosensory cortex evokes task-dependent, spatially patterned responses in motor cortex
The primary motor (M1) and somatosensory (S1) cortices play critical roles in motor control but the signaling between these structures is poorly understood. To fill this gap, we recorded – in three participants in an ongoing human clinical trial (NCT01894802) for people with paralyzed hands – the responses evoked in the hand and arm representations of M1 during intracortical microstimulation (ICMS) in the hand representation of S1. We found that ICMS of S1 activated some M1 neurons at short, fixed latencies consistent with monosynaptic activation. Additionally, most of the ICMS-evoked responses in M1 were more variable in time, suggesting indirect effects of stimulation. The spatial pattern of M1 activation varied systematically: S1 electrodes that elicited percepts in a finger preferentially activated M1 neurons excited during that finger’s movement. Moreover, the indirect effects of S1 ICMS on M1 were context dependent, such that the magnitude and even sign relative to baseline varied across tasks. We tested the implications of these effects for brain-control of a virtual hand, in which ICMS conveyed tactile feedback. While ICMS-evoked activation of M1 disrupted decoder performance, this disruption was minimized using biomimetic stimulation, which emphasizes contact transients at the onset and offset of grasp, and reduces sustained stimulation. Here the authors record the responses evoked in the hand and arm representations of M1 during intracortical microstimulation in the hand representation of S1, and show somatotopically organized connections with motor cortex. The resulting interference with motor decoding is task dependent but can be alleviated by using biomimetic stimulation.
A collaborative resource platform for non-human primate neuroimaging
Neuroimaging non-human primates (NHPs) is a growing, yet highly specialized field of neuroscience. Resources that were primarily developed for human neuroimaging often need to be significantly adapted for use with NHPs or other animals, which has led to an abundance of custom, in-house solutions. In recent years, the global NHP neuroimaging community has made significant efforts to transform the field towards more open and collaborative practices. Here we present the PRIMatE Resource Exchange (PRIME-RE), a new collaborative online platform for NHP neuroimaging. PRIME-RE is a dynamic community-driven hub for the exchange of practical knowledge, specialized analytical tools, and open data repositories, specifically related to NHP neuroimaging. PRIME-RE caters to both researchers and developers who are either new to the field, looking to stay abreast of the latest developments, or seeking to collaboratively advance the field .
A population MRI brain template and analysis tools for the macaque
The use of standard anatomical templates is common in human neuroimaging, as it facilitates data analysis and comparison across subjects and studies. For non-human primates, previous in vivo templates have lacked sufficient contrast to reliably validate known anatomical brain regions and have not provided tools for automated single-subject processing. Here we present the “National Institute of Mental Health Macaque Template”, or NMT for short. The NMT is a high-resolution in vivo MRI template of the average macaque brain generated from 31 subjects, as well as a neuroimaging tool for improved data analysis and visualization. From the NMT volume, we generated maps of tissue segmentation and cortical thickness. Surface reconstructions and transformations to previously published digital brain atlases are also provided. We further provide an analysis pipeline using the NMT that automates and standardizes the time-consuming processes of brain extraction, tissue segmentation, and morphometric feature estimation for anatomical scans of individual subjects. The NMT and associated tools thus provide a common platform for precise single-subject data analysis and for characterizations of neuroimaging results across subjects and studies. •We present an anatomical template, distilled from in vivo MRI scans of 31 monkeys.•We classified various tissue types and present a novel atlas of blood vasculature.•Pial, mid-cortical, and white matter surfaces are provided for data visualization.•Scripts are provided to automate segmentation and characterization of other monkeys.•The template, surfaces, segmentation maps, and analysis tools are freely available.
Decomposing Complex Movement Using Discrete Dynamical Population States
The long history of research on primary motor cortex has led to a consensus that low-dimensional dynamics can characterize motor population activity, with categorically different activity regimens during distinct phases of movement. Here I build from previous work in the previous work to strengthen the claim that primary motor cortex uses distinct patterns of population neural activity which switch during movement execution. I replicate previous findings using parametric Hidden Markov Models and evolve our understanding of these population states by implementing recurrent switching linear dynamical systems models on data from nonhuman primates executing two-dimensional planar reaching movements. Neural population states mapped onto accelerative and decelerative directional components of motion, and linear dynamics of discrete states exhibit relationships with the kinematics they produce. These results further support the view that movement representations in M1 populations decompose movements into accelerative/decelerative directional elements instead of bell-shaped sub movements. Here I also present potential applications and evolutions of these findings in future experiments and contexts.
Microstimulation of human somatosensory cortex evokes task-dependent, spatially patterned responses in motor cortex
Motor (M1) and somatosensory (S1) cortex play a critical role in motor control but the nature of the signaling between these structures is not known. To fill this gap, we recorded – in three human participants whose hands were paralyzed as a result of a spinal cord injury – the responses evoked in the hand and arm representations of primary motor cortex (M1) while we delivered ICMS to the somatosensory cortex (S1). We found that ICMS of S1 activated some M1 neurons at short, fixed latencies, locked to each pulse in a manner consistent with monosynaptic activation. However, most of the changes in M1 firing rates were much more variable in time, suggesting a more indirect effect of the stimulation. The spatial pattern of M1 activation varied systematically depending on the stimulating electrode: S1 electrodes that elicited percepts at a given hand location tended to activate M1 neurons with movement fields at the same location. However, the indirect effects of S1 ICMS on M1 were strongly context dependent, such that the magnitude and even sign relative to baseline varied across tasks. We tested the implications of these effects for brain-control of a virtual hand, in which ICMS was used to convey tactile feedback about object interactions. While ICMS-evoked activation of M1 disrupted decoder performance, this disruption could be minimized with biomimetic stimulation, which emphasizes contact transients at the onset and offset of grasp, reduces sustained stimulation, and has been shown to convey useful contact-related information. Motor (M1) and somatosensory (S1) cortex play a critical role in motor control but the nature of the signaling between these structures is not known. To fill this gap, we recorded from M1 while delivering intracortical microstimulation (ICMS) to S1 of three human participants, whose hands were paralyzed by spinal cord injury. We found that ICMS activates M1 and that the motor fields of activated M1 neurons match the sensory fields of the stimulated S1 electrodes. These findings have important implications for using ICMS to convey tactile feedback for brain-controlled bionic hands. Indeed, the ICMS-evoked M1 activity worsens control of the hand. Fortunately, this effect is minimized by using biomimetic tactile feedback, which emphasizes contact transients and reduces sustained ICMS.
A comprehensive macaque fMRI pipeline and hierarchical atlas
Functional neuroimaging research in the non-human primate (NHP) has been advancing at a remarkable rate. The increase in available data establishes a need for robust analysis pipelines designed for NHP neuroimaging and accompanying template spaces to standardize the localization of neuroimaging results. Our group recently developed the NIMH Macaque Template (NMT), a high-resolution population average anatomical template and associated neuroimaging resources, providing researchers with a standard space for macaque neuroimaging (Seidlitz, Sponheim et al., 2018). Here, we release NMT v2, which includes both symmetric and asymmetric templates in stereotaxic orientation, with improvements in spatial contrast, processing efficiency, and segmentation. We also introduce the Cortical Hierarchy Atlas of the Rhesus Macaque (CHARM), a hierarchical parcellation of the macaque cerebral cortex with varying degrees of detail. These tools have been integrated into the neuroimaging analysis software AFNI (Cox, 1996) to provide a comprehensive and robust pipeline for fMRI processing, visualization and analysis of NHP data. AFNI's new @animal_warper program can be used to efficiently align anatomical scans to the NMT v2 space, and afni_proc.py integrates these results with full fMRI processing using macaque-specific parameters: from motion correction through regression modeling. Taken together, the NMT v2 and AFNI represent an all-in-one package for macaque functional neuroimaging analysis, as demonstrated with available demos for both task and resting state fMRI. Competing Interest Statement The authors have declared no competing interest. Footnotes * https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/nonhuman/main_toc.html
CIVET-Macaque: an automated pipeline for MRI-based cortical surface generation and cortical thickness in macaques
The MNI CIVET pipeline for automated extraction of cortical surfaces and evaluation of cortical thickness from in-vivo human MRI has been extended for processing macaque brains. Processing is performed based on the NIMH Macaque Template (NMT), as the reference template, with the anatomical parcellation of the surface following the D99 and CHARM atlases. The modifications needed to adapt CIVET to the macaque brain are detailed. Results have been obtained using CIVET-macaque to process the anatomical scans of the 31 macaques used to generate the NMT and another 95 macaques from the PRIME-DE initiative. It is anticipated that the open usage of CIVET-macaque will promote collaborative efforts in data collection and processing, sharing, and automated analyses from which the non-human primate brain imaging field will advance. Competing Interest Statement The authors have declared no competing interest.
A collaborative resource platform for non-human primate neuroimaging
Abstract Neuroimaging non-human primates (NHPs) is a growing, yet highly specialized field of neuroscience. Resources that were primarily developed for human neuroimaging often need to be significantly adapted for use with NHPs or other animals, which has led to an abundance of custom, in-house solutions. In recent years, the global NHP neuroimaging community has made significant efforts to transform the field towards more open and collaborative practices. Here we present the PRIMatE Resource Exchange (PRIME-RE), a new collaborative online platform for NHP neuroimaging. PRIME-RE is a dynamic community-driven hub for the exchange of practical knowledge, specialized analytical tools, and open data repositories, specifically related to NHP neuroimaging. PRIME-RE caters to both researchers and developers who are either new to the field, looking to stay abreast of the latest developments, or seeking to collaboratively advance the field. Competing Interest Statement The authors have declared no competing interest. Footnotes * Conflict of interest: The authors declare no conflict of interest. * The manuscript was revised in response to peer-review. - A new Figure 1 has been added. - Figure 2 has been updated. - Some figure captions were expanded. - Some small additions were made to the Discussion.