Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
104 result(s) for "Stallknecht, David E"
Sort by:
Bald eagle mortality and nest failure due to clade 2.3.4.4 highly pathogenic H5N1 influenza a virus
The bald eagle ( Haliaeetus leucocephalus ) is a culturally and ecologically vital species in North America that embodies conservation success but continues to face threats that include emerging pathogens. The introduction of A/goose/Guangdong/1/1996 lineage highly pathogenic (HP) clade 2.3.4.4b H5N1 influenza A virus (IAV) in North America in late 2021 resulted in high rates of mortality among bald eagles. Here we show an alarming rate of bald eagle nest failure and mortality attributed to HP IAV. We documented fatal, systemic HP IAV infection in breeding adult and nestling bald eagles along the southeastern U.S. coast. Concurrently, annual bald eagle nest surveys in Georgia and Florida revealed a precipitous drop in success in coastal counties compared with previous years, portending negative impacts on population recruitment. As an apex predator and efficient scavenger, it is likely that bald eagles become infected through consumption of infected waterfowl. These results and similar reports of raptor mortality in Europe, Asia, and Africa, indicate a clear threat to raptor health. The possible long-term persistence of HP H5N1 IAV in North America poses an impending threat to bald eagle populations not only related to direct mortality but also decreased recruitment and warrants continued efforts to understand these potential impacts.
Antibodies to Influenza A(H5N1) Virus in Hunting Dogs Retrieving Wild Fowl, Washington, USA
We detected antibodies to H5 and N1 subtype influenza A viruses in 4/194 (2%) dogs from Washington, USA, that hunted or engaged in hunt tests and training with wild birds. Historical data provided by dog owners showed seropositive dogs had high levels of exposure to waterfowl.
Competition between influenza A virus subtypes through heterosubtypic immunity modulates re-infection and antibody dynamics in the mallard duck
Our overall hypothesis is that host population immunity directed at multiple antigens will influence the prevalence, diversity and evolution of influenza A virus (IAV) in avian populations where the vast subtype diversity is maintained. To investigate how initial infection influences the outcome of later infections with homologous or heterologous IAV subtypes and how viruses interact through host immune responses, we carried out experimental infections in mallard ducks (Anas platyrhynchos). Mallards were pre-challenged with an H3N8 low-pathogenic IAV and were divided into six groups. At five weeks post H3N8 inoculation, each group was challenged with a different IAV subtype (H4N5, H10N7, H6N2, H12N5) or the same H3N8. Two additional pre-challenged groups were inoculated with the homologous H3N8 virus at weeks 11 and 15 after pre-challenge to evaluate the duration of protection. The results showed that mallards were still resistant to re-infection after 15 weeks. There was a significant reduction in shedding for all pre-challenged groups compared to controls and the outcome of the heterologous challenges varied according to hemagglutinin (HA) phylogenetic relatedness between the viruses used. There was a boost in the H3 antibody titer after re-infection with H4N5, which is consistent with original antigenic sin or antigenic seniority and suggest a putative strategy of virus evasion. These results imply competition between related subtypes that could regulate IAV subtype population dynamics in nature. Collectively, we provide new insights into within-host IAV complex interactions as drivers of IAV antigenic diversity that could allow the circulation of multiple subtypes in wild ducks.
Potential impacts of 2.3.4.4b highly pathogenic H5N1 avian influenza virus infection on Snow Goose (Anser caerulescens) movement ecology
While wild waterfowl are known reservoirs of avian influenza viruses and facilitate the movement of these viruses, there are notable differences in the response to infection across species. This study explored differential responses to infection with highly pathogenic avian influenza in Snow Geese ( Anser caerulescens ) located in the California Central Valley. Though H5 antibody prevalence was high across years among birds sampled in the winter (75% in both years via hemagglutination inhibition), these values were even higher among birds sampled in summer that failed to migrate (i.e., August 2023 = 100% and August 2024 = 93% via hemagglutination inhibition). Birds that failed to migrate were also generally lighter than birds sampled in the winter and presented notable damage to cerebrum and cerebellum. In December 2022, a single individual positive for infection with H5N1 at the time of sampling indicated reduced movement during the 14 days following sampling but completed spring migration comparably with uninfected conspecifics. However, while no birds were actively infected during sampling and marking in 2023, two marked geese departed for migration late and one did not migrate at all. Additional banded birds marked in August have been reencountered in scenarios ranging from hunter harvest at a different site over a year later to found dead shortly after banding. Our data indicate that Snow Geese infected with HPAI have the potential to express variable outcomes following infection with highly pathogenic H5N1, ranging from rapid recovery within a migratory season to death. These data also suggest that the abnormal failure of some Snow Geese to migrate from the Central Valley is likely driven by HPAI infection.
Environmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion
Understanding the transmission dynamics and persistence of avian influenza viruses (AIVs) in the wild is an important scientific and public health challenge because this system represents both a reservoir for recombination and a source of novel, potentially human-pathogenic strains. The current paradigm locates all important transmission events on the nearly direct fecal/oral bird-to-bird pathway. In this article, on the basis of overlooked evidence, we propose that an environmental virus reservoir gives rise to indirect transmission. This transmission mode could play an important epidemiological role. Using a stochastic model, we demonstrate how neglecting environmentally generated transmission chains could underestimate the explosiveness and duration of AIV epidemics. We show the important pathogen invasion implications of this phenomenon: the nonnegligible probability of outbreak even when direct transmission is absent, the long-term infectivity of locations of prior outbreaks, and the role of environmental heterogeneity in risk.
The Role of Environmental Transmission in Recurrent Avian Influenza Epidemics
Avian influenza virus (AIV) persists in North American wild waterfowl, exhibiting major outbreaks every 2-4 years. Attempts to explain the patterns of periodicity and persistence using simple direct transmission models are unsuccessful. Motivated by empirical evidence, we examine the contribution of an overlooked AIV transmission mode: environmental transmission. It is known that infectious birds shed large concentrations of virions in the environment, where virions may persist for a long time. We thus propose that, in addition to direct fecal/oral transmission, birds may become infected by ingesting virions that have long persisted in the environment. We design a new host-pathogen model that combines within-season transmission dynamics, between-season migration and reproduction, and environmental variation. Analysis of the model yields three major results. First, environmental transmission provides a persistence mechanism within small communities where epidemics cannot be sustained by direct transmission only (i.e., communities smaller than the critical community size). Second, environmental transmission offers a parsimonious explanation of the 2-4 year periodicity of avian influenza epidemics. Third, very low levels of environmental transmission (i.e., few cases per year) are sufficient for avian influenza to persist in populations where it would otherwise vanish.
Exposure of Wild Mammals to Influenza A(H5N1) Virus, Alaska, USA, 2020–2023
Serum samples from wild mammals inhabiting Alaska, USA, showed that 4 species, including Ursus arctos bears and Vulpes vulpes foxes, were exposed to influenza A(H5N1) viruses. Results indicated some mammals in Alaska survived H5N1 virus infection. Surveillance efforts may be improved by incorporating information on susceptibility and detectable immune responses among wild mammals.
Maintenance and dissemination of avian-origin influenza A virus within the northern Atlantic Flyway of North America
Wild waterbirds, the natural reservoirs for avian influenza viruses, undergo migratory movements each year, connecting breeding and wintering grounds within broad corridors known as flyways. In a continental or global view, the study of virus movements within and across flyways is important to understanding virus diversity, evolution, and movement. From 2015 to 2017, we sampled waterfowl from breeding (Maine) and wintering (Maryland) areas within the Atlantic Flyway (AF) along the east coast of North America to investigate the spatio-temporal trends in persistence and spread of influenza A viruses (IAV). We isolated 109 IAVs from 1,821 cloacal / oropharyngeal samples targeting mallards (Anas platyrhynchos) and American black ducks (Anas rubripes) , two species having ecological and conservation importance in the flyway that are also host reservoirs of IAV. Isolates with >99% nucleotide similarity at all gene segments were found between eight pairs of birds in the northern site across years, indicating some degree of stability among genome constellations and the possibility of environmental persistence. No movement of whole genome constellations were identified between the two parts of the flyway, however, virus gene flow between the northern and southern study locations was evident. Examination of banding records indicate direct migratory waterfowl movements between the two locations within an annual season, providing a mechanism for the inferred viral gene flow. Bayesian phylogenetic analyses provided evidence for virus dissemination from other North American wild birds to AF dabbling ducks (Anatinae), shorebirds (Charidriformes), and poultry (Galliformes). Evidence was found for virus dissemination from shorebirds to gulls (Laridae), and dabbling ducks to shorebirds and poultry. The findings from this study contribute to the understanding of IAV ecology in waterfowl within the AF.
Influenza A Virus Antibodies in Ducks and Introduction of Highly Pathogenic Influenza A(H5N1) Virus, Tennessee, USA
Testing of ducks in Tennessee, United States, before introduction of highly pathogenic influenza A(H5N1) virus demonstrated a high prevalence of antibodies to influenza A virus but very low prevalence of antibodies to H5 (25%) or H5 and N1 (13%) subtypes. Antibody prevalence increased after H5N1 introduction.
Exposure and survival of wild raptors during the 2022–2023 highly pathogenic influenza a virus outbreak
The global outbreak of clade 2.3.4.4b H5N1 highly pathogenic influenza A virus (HP H5N1) has had an unprecedented impact on wild birds including raptors, but long-term population impacts have not been addressed. To determine if raptors survive infections with HP H5N1, raptors from the upper Midwest United States were serologically tested for antibodies to influenza A virus (IAV), H5 and N1. Raptors were sampled at The Raptor Center’s (University of Minnesota) wildlife rehabilitation hospital and at Hawk Ridge Bird Observatory. Samples were tested for IAV antibodies using a commercially available blocking ELISA, with positive samples tested for antibodies to H5 and N1. Antibodies to IAV were detected in 86 out of 316 individuals representing 7 species. Antibodies to H5 and N1 were detected in 60 individuals representing 6 species. Bald eagles had the highest seroprevalence with 67/97 (69.1%) seropositive for IAV and 52 of these 67 (77.6%) testing positive for antibodies to both H5 and N1. Prevalence of antibodies to IAV observed in this study was higher than reported from raptors sampled in this same region in 2012. The high prevalence of antibodies to H5 and N1 indicates a higher survival rate post-HP H5N1 infection in raptors than previously believed.