Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
66
result(s) for
"Stanley, Valentina"
Sort by:
Loss of NARS1 impairs progenitor proliferation in cortical brain organoids and leads to microcephaly
2020
Asparaginyl-tRNA synthetase1 (NARS1) is a member of the ubiquitously expressed cytoplasmic Class IIa family of tRNA synthetases required for protein translation. Here, we identify biallelic missense and frameshift mutations in
NARS1
in seven patients from three unrelated families with microcephaly and neurodevelopmental delay. Patient cells show reduced NARS1 protein, impaired NARS1 activity and impaired global protein synthesis. Cortical brain organoid modeling shows reduced proliferation of radial glial cells (RGCs), leading to smaller organoids characteristic of microcephaly. Single-cell analysis reveals altered constituents of both astrocytic and RGC lineages, suggesting a requirement for
NARS1
in RGC proliferation. Our findings demonstrate that
NARS1
is required to meet protein synthetic needs and to support RGC proliferation in human brain development.
Asparaginyl-tRNA synthetase1 (NARS1) is required for protein synthesis. Here, the authors identify biallelic NARS1 mutations in individuals with microcephaly and neurodevelopmental delay. Cortical brain organoid modeling recapitulates microcephaly characteristics and scRNA-seq reveals a role for NARS1 in radial glial cell proliferation.
Journal Article
Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism
by
Staahl, Brett T.
,
Crabtree, Gerald R.
,
Baek, Seung Tae
in
Actins - genetics
,
Activator protein 1
,
Adenosine Triphosphate - genetics
2020
Synaptic activity in neurons leads to the rapid activation of genes involved in mammalian behavior. ATP-dependent chromatin remodelers such as the BAF complex contribute to these responses and are generally thought to activate transcription. However, the mechanisms keeping such “early activation” genes silent have been a mystery. In the course of investigating Mendelian recessive autism, we identified six families with segregating loss-of-function mutations in the neuronal BAF (nBAF) subunit ACTL6B (originally named BAF53b). Accordingly, ACTL6B was the most significantly mutated gene in the Simons Recessive Autism Cohort. At least 14 subunits of the nBAF complex are mutated in autism, collectively making it a major contributor to autism spectrum disorder (ASD). Patient mutations destabilized ACTL6B protein in neurons and rerouted dendrites to the wrong glomerulus in the fly olfactory system. Humans and mice lacking ACTL6B showed corpus callosum hypoplasia, indicating a conserved role for ACTL6B in facilitating neural connectivity. Actl6b knockout mice on two genetic backgrounds exhibited ASD-related behaviors, including social and memory impairments, repetitive behaviors, and hyperactivity. Surprisingly, mutation of Actl6b relieved repression of early response genes including AP1 transcription factors (Fos, Fosl2, Fosb, and Junb), increased chromatin accessibility at AP1 binding sites, and transcriptional changes in late response genes associated with early response transcription factor activity. ACTL6B loss is thus an important cause of recessive ASD, with impaired neuronspecific chromatin repression indicated as a potential mechanism.
Journal Article
Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy
2019
Aminoacyl-tRNA synthetases (ARSs) function to transfer amino acids to cognate tRNA molecules, which are required for protein translation. To date, biallelic mutations in 31 ARS genes are known to cause recessive, early-onset severe multi-organ diseases.
VARS
encodes the only known valine cytoplasmic-localized aminoacyl-tRNA synthetase. Here, we report seven patients from five unrelated families with five different biallelic missense variants in
VARS
. Subjects present with a range of global developmental delay, epileptic encephalopathy and primary or progressive microcephaly. Longitudinal assessment demonstrates progressive cortical atrophy and white matter volume loss. Variants map to the VARS tRNA binding domain and adjacent to the anticodon domain, and disrupt highly conserved residues. Patient primary cells show intact VARS protein but reduced enzymatic activity, suggesting partial loss of function. The implication of
VARS
in pediatric neurodegeneration broadens the spectrum of human diseases due to mutations in tRNA synthetase genes.
Valyl-tRNA synthetase (VARS) charges valyl-tRNA with the amino acid valine, required for translation. Here, the authors describe a progressive epileptic encephalopathy in individuals from five families carrying biallelic mutations in the
VARS
gene that leave the enzyme activity partially intact.
Journal Article
Unbiased mosaic variant assessment in sperm: a cohort study to test predictability of transmission
by
Morales, Arlene J
,
Stanley, Valentina
,
Breuss, Martin W
in
Artificial insemination
,
blastocyst
,
Blastocysts
2022
De novo mutations underlie individually rare but collectively common pediatric congenital disorders. Some of these mutations can also be detected in tissues and from cells in a parent, where their abundance and tissue distribution can be measured. We previously reported that a subset of these mutations is detectable in sperm from the father, predicted to impact the health of offspring. As a cohort study, in three independent couples undergoing in vitro fertilization, we first identified male gonadal mosaicism through deep whole genome sequencing. We then confirmed variants and assessed their transmission to preimplantation blastocysts (32 total) through targeted ultra-deep genotyping. Across 55 gonadal mosaic variants, 15 were transmitted to blastocysts for a total of 19 transmission events. This represented an overall predictable but slight undertransmission based upon the measured mutational abundance in sperm. We replicated this conclusion in an independent, previously published family-based cohort. Unbiased preimplantation genetic testing for gonadal mosaicism may represent a feasible approach to reduce the transmission of potentially harmful de novo mutations. This--in turn--could help to reduce their impact on miscarriages and pediatric disease.
Journal Article
Clinician-centric diagnosis of rare genetic diseases: performance of a gene pertinence metric in decision support for clinicians
by
Waltman, Peter
,
George, Renee
,
Gleeson, Joseph
in
Analysis
,
Annotations
,
Artificial intelligence
2020
Background
In diagnosis of rare genetic diseases we face a decision as to the degree to which the sequencing lab offers one or more diagnoses based on clinical input provided by the clinician, or the clinician reaches a diagnosis based on the complete set of variants provided by the lab. We tested a software approach to assist the clinician in making the diagnosis based on clinical findings and an annotated genomic variant table, using cases already solved using less automated processes.
Results
For the 81 cases studied (involving 216 individuals), 70 had genetic abnormalities with phenotypes previously described in the literature, and 11 were not described in the literature at the time of analysis (“discovery genes”). These included cases beyond a trio, including ones with different variants in the same gene. In 100% of cases the abnormality was recognized. Of the 70, the abnormality was ranked #1 in 94% of cases, with an average rank 1.1 for all cases. Large CNVs could be analyzed in an integrated analysis, performed in 24 of the cases. The process is rapid enough to allow for periodic reanalysis of unsolved cases.
Conclusions
A clinician-friendly environment for clinical correlation can be provided to clinicians who are best positioned to have the clinical information needed for this interpretation.
Journal Article
Author Correction: Loss of NARS1 impairs progenitor proliferation in cortical brain organoids and leads to microcephaly
2021
A Correction to this paper has been published: https://doi.org/10.1038/s41467-021-21448-1
Journal Article
Molecular diagnosis in recessive pediatric neurogenetic disease can help reduce disease recurrence in families
by
George, Renee D.
,
Issa, Mahmoud Y.
,
Abdel-Hamid, Mohamed S.
in
Amniocentesis
,
Biomedical and Life Sciences
,
Biomedicine
2020
Background
The causes for thousands of individually rare recessive diseases have been discovered since the adoption of next generation sequencing (NGS). Following the molecular diagnosis in older children in a family, parents could use this information to opt for fetal genotyping in subsequent pregnancies, which could inform decisions about elective termination of pregnancy. The use of NGS diagnostic sequencing in families has not been demonstrated to yield benefit in subsequent pregnancies to reduce recurrence. Here we evaluated whether genetic diagnosis in older children in families supports reduction in recurrence of recessive neurogenetic disease.
Methods
Retrospective study involving families with a child with a recessive pediatric brain disease (rPBD) that underwent NGS-based molecular diagnosis. Prenatal molecular testing was offered to couples in which a molecular diagnosis was made, to help couples seeking to prevent recurrence. With this information, families made decisions about elective termination. Pregnancies that were carried to term were assessed for the health of child and mother, and compared with historic recurrence risk of recessive disease.
Results
Between 2010 and 2016, 1172 families presented with a child a likely rPBD, 526 families received a molecular diagnosis, 91 families returned to the clinic with 101 subsequent pregnancies, and 84 opted for fetal genotyping. Sixty tested negative for recurrence for the biallelic mutation in the fetus, and all, except for one spontaneous abortion, carried to term, and were unaffected at follow-up. Of 24 that genotyped positive for the biallelic mutation, 16 were electively terminated, and 8 were carried to term and showed features of disease similar to that of the older affected sibling(s). Among the 101 pregnancies, disease recurrence in living offspring deviated from the expected 25% to the observed 12% ([95% CI 0·04 to 0·20],
p
= 0·011).
Conclusions
Molecular diagnosis in an older child, coupled with prenatal fetal genotyping in subsequent pregnancies and genetic counselling, allows families to make informed decisions to reduce recessive neurogenetic disease recurrence.
Journal Article
mTOR pathway somatic variants and the molecular pathogenesis of hemimegalencephaly
by
Ball, Laurel L.
,
Saggioro, Fabiano P.
,
Breuss, Martin W.
in
Deoxyribonucleic acid
,
Epilepsy
,
Full‐length Original Research
2020
Objectives Recently, defects in the protein kinase mTOR (mammalian target of rapamycin) and its associated pathway have been correlated with hemimegalencephaly (HME). mTOR acts as a central regulator of important physiological cellular functions such as growth and proliferation, metabolism, autophagy, death, and survival. This study was aimed at identifying specific variants in mTOR signaling pathway genes in patients diagnosed with HME. Methods Using amplicon and whole exome sequencing (WES) of resected brain and paired blood samples from five HME patients, we were able to identify pathogenic mosaic variants in the mTOR pathway genes MTOR, PIK3CA, and DEPDC5. Results These results strengthen the hypothesis that somatic variants in PI3K‐Akt‐mTOR pathway genes contribute to HME. We also describe one patient presenting with a pathogenic variant on DEPDC5 gene, which reinforces the role of DEPDC5 on cortical structural changes due to mTORC1 hyperactivation. These findings also provide insights into when in brain development these variants occurred. An early developmental variant is expected to affect a larger number of cells and to result in a larger malformation, whereas the same variant occurring later in development would cause a minor malformation. Significance In the future, numerous somatic variants in known or new genes will undoubtedly be revealed in resected brain samples, making it possible to draw correlations between genotypes and phenotypes and allow for a genetic clinical diagnosis that may help to predict a given patient's outcome.
Journal Article
Cell-type-resolved mosaicism reveals clonal dynamics of the human forebrain
2024
Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain
1
–
7
. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1
+
inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior–posterior axis precedes restriction in the dorsal–ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.
Using mosaic variant barcode analysis, clonal dynamics of specific cell types are deconvolved in the human forebrain.
Journal Article