Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "Stark, Brandon"
Sort by:
Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems
In this paper, an adaptive sliding mode technique based on a fractional-order (FO) switching-type control law is designed to guarantee robust stability for uncertain 3D FO nonlinear systems. A novel FO switching-type control law is proposed to ensure the existence of the sliding motion in finite time. Appropriate adaptive laws are shown to tackle the uncertainty and external disturbance. The calculation formula of the reaching time is analyzed and computed. The reachability analysis is visualized to show how to obtain a shorter reaching time. A stability criterion of the FO sliding mode dynamics is derived based on indirect approach to Lyapunov stability. Advantages of the proposed control scheme are illustrated through numerical simulations.
Challenges in Water Stress Quantification Using Small Unmanned Aerial System (sUAS): Lessons from a Growing Season of Almond
We conducted a study in a large almond farm in Merced County, California, to monitor water status by using high-resolution multi-spectral imagery accquired by a Small Unmanned Aerial System (sUAS). More specifically, we would like to predict Stem Water Potential (SWP) via canopy Normalized Difference Vegetation Index (NDVI). During 2014, an aircraft equipped with multi-spectral cameras flew over the orchard weekly throughout the growing season. At the same time, SWP was measured for the sample trees under five different water treatment levels. Instead of averaging pixels in an orchard level, a block level or a canopy level, pixels were analyzed in the sub-canopy level to obtain canopy NDVI. An improved correlation between SWP and canopy NDVI was obtained by applying lower NDVI threshold. The relationship between SWP and canopy NDVI was also discussed at different growing stages–fruit development and post-harvest. However, tests of equality of distribution indicated that canopy NDVI distributions from different flights within a day were significantly different. Therefore, further calibration regarding the effects of solar motion on canopy NDVI is necessary.
Optimal Remote Sensing with Small Unmanned Aircraft Systems and Risk Management
Over the past decade, the rapid rise of Unmanned Aircraft Systems (UASs) has blossomed into a new component of the aviation industry. Though regulations within the United States lagged, the promise of the ability of Small Unmanned Aircraft Systems (SUASs), or those UAS that weigh less than 55 lbs, has driven significant advances in small scale aviation technology. The dream of a small, low-cost aerial platform that can fly anywhere and keep humans safely away from the `dull, dangerous and dirty' jobs, has encouraged many to examine the possibilities of utilizing SUAS in new and transformative ways, especially as a new tool in remote sensing. However, as with any new tool, there remains significant challenges in realizing the full potential of SUAS-based remote sensing. Within this dissertation, two specific challenges are addressed: validating the use of SUAS as a remote sensing platform and improving the safety and management of SUAS. The use of SUAS in remote sensing is a relatively new challenge and while it has many similarities to other remote sensing platforms, the dynamic nature of its operation makes it unique. In this dissertation, a closer look at the methodology of using SUAS reveals that while many view SUAS as an alternative to satellite imagery, this is an incomplete view and that the current common implementation introduces a new source of error that has significant implications on the reliability of the data collected. It can also be seen that a new approach to remote sensing with an SUAS can be developed by addressing the spatial, spectral and temporal factors that can now be more finely adjusted with the use of SUAS. However, to take the full advantage of the potential of SUAS, they must uphold the promise of improved safety. This is not a trivial challenge, especially for the integration into the National Airspace System (NAS) and for the safety management and oversight of diverse UAS operations. In this dissertation, the challenge of integrating SUAS in the NAS is addressed by presenting an analysis of enabling flight operations at night, developing a swarm safety management system for improving SUAS robustness, investigating the use of new technology on SUAS to improve air safety, and developing a novel framework to better understand human-SUAS interaction. Addressing the other side of safety, this dissertation discusses the struggle of large diverse organizations to balance acceptance, safety and oversight for UAS operations and the development of a novel implementation of a UAS Safety Management System.
Concept of Operations for Personal Remote Sensing Unmanned Aerial Systems
Unmanned Aerial Systems (UASs) have rapidly grown into a significant part of the world-wide aviation budget. However, regulations and official standards have lagged significantly. Within the U.S., there has been significant pressure to develop the regulations to allow commercial and governmental agencies to utilize UASs within the National Airspace System (NAS). The authors propose a concept of operation document that incorporates existing regulations and ensures an acceptable level of performance based on experience with a Personal Remote Sensing (PRS) Unmanned Aerial System (UAS).
Design, Modeling and Validation of a T-Tail Unmanned Aerial Vehicle
This paper addresses the design and modeling process of a T-tail unmanned aerial vehicle (UAV). A methodology is presented of how to make tradeoffs among the payload requirements, energy efficiency and aerodynamic stability. A linear decoupled model of longitudinal and lateral dynamics is abstracted from a physical airframe. Instead of subjectively estimating the order, error and time delay for system identification (system ID), equations of motion derived from aerodynamics are employed to provide more precise estimation of the model structure. System ID is carried out with regard to the flight data collected by the autopilot data logger. The resulted model is refined based on the simulation and comparison.
The Future of Unmanned Flight Approaches
For years, engineering students, for instance, have studied the advanced control algorithms that keep drones flying level and straight. Beyond the academic realm To meet the demand from people with no experience in drone technology, we have developed special workshops for students, staff, faculty and UC research partners to learn about drone technology, regulations and flight instruction.\\n
Trade Publication Article
Evaluation of the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in infantile epilepsy (Gene-STEPS): an international, multicentre, pilot cohort study
Most neonatal and infantile-onset epilepsies have presumed genetic aetiologies, and early genetic diagnoses have the potential to inform clinical management and improve outcomes. We therefore aimed to determine the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in this population. We conducted an international, multicentre, cohort study (Gene-STEPS), which is a pilot study of the International Precision Child Health Partnership (IPCHiP). IPCHiP is a consortium of four paediatric centres with tertiary-level subspecialty services in Australia, Canada, the UK, and the USA. We recruited infants with new-onset epilepsy or complex febrile seizures from IPCHiP centres, who were younger than 12 months at seizure onset. We excluded infants with simple febrile seizures, acute provoked seizures, known acquired cause, or known genetic cause. Blood samples were collected from probands and available biological parents. Clinical data were collected from medical records, treating clinicians, and parents. Trio genome sequencing was done when both parents were available, and duo or singleton genome sequencing was done when one or neither parent was available. Site-specific protocols were used for DNA extraction and library preparation. Rapid genome sequencing and analysis was done at clinically accredited laboratories, and results were returned to families. We analysed summary statistics for cohort demographic and clinical characteristics and the timing, diagnostic yield, and clinical impact of rapid genome sequencing. Between Sept 1, 2021, and Aug 31, 2022, we enrolled 100 infants with new-onset epilepsy, of whom 41 (41%) were girls and 59 (59%) were boys. Median age of seizure onset was 128 days (IQR 46–192). For 43 (43% [binomial distribution 95% CI 33–53]) of 100 infants, we identified genetic diagnoses, with a median time from seizure onset to rapid genome sequencing result of 37 days (IQR 25–59). Genetic diagnosis was associated with neonatal seizure onset versus infantile seizure onset (14 [74%] of 19 vs 29 [36%] of 81; p=0·0027), referral setting (12 [71%] of 17 for intensive care, 19 [44%] of 43 non-intensive care inpatient, and 12 [30%] of 40 outpatient; p=0·0178), and epilepsy syndrome (13 [87%] of 15 for self-limited epilepsies, 18 [35%] of 51 for developmental and epileptic encephalopathies, 12 [35%] of 34 for other syndromes; p=0·001). Rapid genome sequencing revealed genetic heterogeneity, with 34 unique genes or genomic regions implicated. Genetic diagnoses had immediate clinical utility, informing treatment (24 [56%] of 43), additional evaluation (28 [65%]), prognosis (37 [86%]), and recurrence risk counselling (all cases). Our findings support the feasibility of implementation of rapid genome sequencing in the clinical care of infants with new-onset epilepsy. Longitudinal follow-up is needed to further assess the role of rapid genetic diagnosis in improving clinical, quality-of-life, and economic outcomes. American Academy of Pediatrics, Boston Children's Hospital Children's Rare Disease Cohorts Initiative, Canadian Institutes of Health Research, Epilepsy Canada, Feiga Bresver Academic Foundation, Great Ormond Street Hospital Charity, Medical Research Council, Murdoch Children's Research Institute, National Institute of Child Health and Human Development, National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, One8 Foundation, Ontario Brain Institute, Robinson Family Initiative for Transformational Research, The Royal Children's Hospital Foundation, University of Toronto McLaughlin Centre.
Gene–Environment Interactions in Repeat Expansion Diseases: Mechanisms of Environmentally Induced Repeat Instability
Short tandem repeats (STRs) are units of 1–6 base pairs that occur in tandem repetition to form a repeat tract. STRs exhibit repeat instability, which generates expansions or contractions of the repeat tract. Over 50 diseases, primarily affecting the central nervous system and muscles, are characterized by repeat instability. Longer repeat tracts are typically associated with earlier age of onset and increased disease severity. Environmental exposures are suspected to play a role in the pathogenesis of repeat expansion diseases. Here, we review the current knowledge of mechanisms of environmentally induced repeat instability in repeat expansion diseases. The current evidence demonstrates that environmental factors modulate repeat instability via DNA damage and induction of DNA repair pathways, with distinct mechanisms for repeat expansion and contraction. Of particular note, oxidative stress is a key mediator of environmentally induced repeat instability. The preliminary evidence suggests epigenetic modifications as potential mediators of environmentally induced repeat instability. Future research incorporating an array of environmental exposures, new human cohorts, and improved model systems, with a continued focus on cell-types, tissues, and critical windows, will aid in identifying mechanisms of environmentally induced repeat instability. Identifying environmental modulators of repeat instability and their mechanisms of action will inform preventions, therapies, and public health measures.
Elp2 mutations perturb the epitranscriptome and lead to a complex neurodevelopmental phenotype
Intellectual disability (ID) and autism spectrum disorder (ASD) are the most common neurodevelopmental disorders and are characterized by substantial impairment in intellectual and adaptive functioning, with their genetic and molecular basis remaining largely unknown. Here, we identify biallelic variants in the gene encoding one of the Elongator complex subunits, ELP2, in patients with ID and ASD. Modelling the variants in mice recapitulates the patient features, with brain imaging and tractography analysis revealing microcephaly, loss of white matter tract integrity and an aberrant functional connectome. We show that the Elp2 mutations negatively impact the activity of the complex and its function in translation via tRNA modification. Further, we elucidate that the mutations perturb protein homeostasis leading to impaired neurogenesis, myelin loss and neurodegeneration. Collectively, our data demonstrate an unexpected role for tRNA modification in the pathogenesis of monogenic ID and ASD and define Elp2 as a key regulator of brain development. Subunits of the Elongator complex have been implicated in several nervous system pathologies. Here, the authors identify ELP2 variants in six patients with neurodevelopmental anomalies and show in mouse models that these variants impact protein stability and the activity of the complex during brain development.