Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2
result(s) for
"Startsev, Valerii"
Sort by:
Does Diffusion Beat GAN in Image Super Resolution?
2024
There is a prevalent opinion that diffusion-based models outperform GAN-based counterparts in the Image Super Resolution (ISR) problem. However, in most studies, diffusion-based ISR models employ larger networks and are trained longer than the GAN baselines. This raises the question of whether the high performance stems from the superiority of the diffusion paradigm or if it is a consequence of the increased scale and the greater computational resources of the contemporary studies. In our work, we thoroughly compare diffusion-based and GAN-based Super Resolution models under controlled settings, with both approaches having matched architecture, model and dataset sizes, and computational budget. We show that a GAN-based model can achieve results comparable or superior to a diffusion-based model. Additionally, we explore the impact of popular design choices, such as text conditioning and augmentation on the performance of ISR models, showcasing their effect in several downstream tasks. We will release the inference code and weights of our scaled GAN.
YaART: Yet Another ART Rendering Technology
2024
In the rapidly progressing field of generative models, the development of efficient and high-fidelity text-to-image diffusion systems represents a significant frontier. This study introduces YaART, a novel production-grade text-to-image cascaded diffusion model aligned to human preferences using Reinforcement Learning from Human Feedback (RLHF). During the development of YaART, we especially focus on the choices of the model and training dataset sizes, the aspects that were not systematically investigated for text-to-image cascaded diffusion models before. In particular, we comprehensively analyze how these choices affect both the efficiency of the training process and the quality of the generated images, which are highly important in practice. Furthermore, we demonstrate that models trained on smaller datasets of higher-quality images can successfully compete with those trained on larger datasets, establishing a more efficient scenario of diffusion models training. From the quality perspective, YaART is consistently preferred by users over many existing state-of-the-art models.