Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Steele-Dunne, Susan C."
Sort by:
Macro to micro
Although primarily valued for their suitability for oceanographic applications and soil moisture estimation, microwave remote sensing observations are also sensitive to plant water content (M w). Since M w depends on both plant water status and biomass, these observations have the potential to be useful for a range of plant drought response studies. In this paper, we introduce the principles behind microwave remote sensing observations to illustrate how they are sensitive to plant water content and discuss the relationship between landscape-scale M w and common stand-scale metrics, including plant-scale relative water content, live fuel moisture content and leaf water potential. Lastly, we discuss how various sensor types can be leveraged for specific applications depending on the spatio-temporal resolution needed.
Origin and fate of atmospheric moisture over continents
There has been a long debate on the extent to which precipitation relies on terrestrial evaporation (moisture recycling). In the past, most research focused on moisture recycling within a certain region only. This study makes use of new definitions of moisture recycling to study the complete process of continental moisture feedback. Global maps are presented identifying regions that rely heavily on recycled moisture as well as those that are supplying the moisture. An accounting procedure based on ERA‐Interim reanalysis data is used to calculate moisture recycling ratios. It is computed that, on average, 40% of the terrestrial precipitation originates from land evaporation and that 57% of all terrestrial evaporation returns as precipitation over land. Moisture evaporating from the Eurasian continent is responsible for 80% of China's water resources. In South America, the Río de la Plata basin depends on evaporation from the Amazon forest for 70% of its water resources. The main source of rainfall in the Congo basin is moisture evaporated over East Africa, particularly the Great Lakes region. The Congo basin in its turn is a major source of moisture for rainfall in the Sahel. Furthermore, it is demonstrated that due to the local orography, local moisture recycling is a key process near the Andes and the Tibetan Plateau. Overall, this paper demonstrates the important role of global wind patterns, topography and land cover in continental moisture recycling patterns and the distribution of global water resources.
Sentinel-1 SAR Backscatter Response to Agricultural Drought in The Netherlands
Drought is a major natural hazard that impacts agriculture, the environment, and socio-economic conditions. In 2018 and 2019, Europe experienced a severe drought due to below average precipitation and high temperatures. Drought stress affects the moisture content and structure of agricultural crops and can result in lower yields. Synthetic Aperture Radar (SAR) observations are sensitive to the dielectric and geometric characteristics of crops and underlying soils. This study uses data from ESA’s Sentinel-1 SAR satellite to investigate the influence of drought stress on major arable crops of the Netherlands, its regional variability and the impact of water management decisions on crop development. Sentinel-1 VV, VH and VH/VV backscatter data are used to quantify the variability in the spatio-temporal dynamics of agricultural crop parcels in response to drought. Results show that VV and VH backscatter values are 1 to 2 dB lower for crop parcels during the 2018 drought compared to values in 2017. In addition, the growth season indicated by the cross-ratio (CR, VH/VV) for maize and onion is shorter during the drought year. Differences due to irrigation restrictions are observed in backscatter response from maize parcels. Lower CR values in 2019 indicate the impact of drought on the start of the growing season. Results demonstrate that Sentinel-1 can detect changes in the seasonal cycle of arable crops in response to agricultural drought.
Double-Ended Calibration of Fiber-Optic Raman Spectra Distributed Temperature Sensing Data
Over the past five years, Distributed Temperature Sensing (DTS) along fiber optic cables using Raman backscattering has become an important tool in the environmental sciences. Many environmental applications of DTS demand very accurate temperature measurements, with typical RMSE < 0.1 K. The aim of this paper is to describe and clarify the advantages and disadvantages of double-ended calibration to achieve such accuracy under field conditions. By measuring backscatter from both ends of the fiber optic cable, one can redress the effects of differential attenuation, as caused by bends, splices, and connectors. The methodological principles behind the double-ended calibration are presented, together with a set of practical considerations for field deployment. The results from a field experiment are presented, which show that with double-ended calibration good accuracies can be attained in the field.
Towards Including Dynamic Vegetation Parameters in the EUMETSAT H SAF ASCAT Soil Moisture Products
The TU Wien Soil Moisture Retrieval (TUW SMR) approach is used to produce several operational soil moisture products from the Advanced Scatterometer (ASCAT) on the Metop series of satellites as part of the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H SAF). The incidence angle dependence of backscatter is described by a second-order Taylor polynomial, the coefficients of which are used to normalize ASCAT observations to the reference incidence angle of 40∘ and for correcting vegetation effects. Recently, a kernel smoother was developed to estimate the coefficients dynamically, in order to account for interannual variability. In this study, we used the kernel smoother for estimating these coefficients, where we distinguished for the first time between their two uses, meaning that we used a short and fixed window width for the backscatter normalisation while we tested different window widths for optimizing the vegetation correction. In particular, we investigated the impact of using the dynamic vegetation parameters on soil moisture retrieval. We compared soil moisture retrievals based on the dynamic vegetation parameters to those estimated using the current operational approach by examining their agreement, in terms of the Pearson correlation coefficient, unbiased RMSE and bias with respect to in situ soil moisture. Data from the United States Climate Research Network were used to study the influence of climate class and land cover type on performance. The sensitivity to the kernel smoother half-width was also investigated. Results show that estimating the vegetation parameters with the kernel smoother can yield an improvement when there is interannual variability in vegetation due to a trend or a change in the amplitude or timing of the seasonal cycle. However, using the kernel smoother introduces high-frequency variability in the dynamic vegetation parameters, particularly for shorter kernel half-widths.
Towards Understanding the Influence of Vertical Water Distribution on Radar Backscatter from Vegetation Using a Multi-Layer Water Cloud Model
For a good interpretation of radar backscatter sensitivity to vegetation water dynamics, we need to know which parts of the vegetation layer control that backscatter. However, backscatter sensitivity to different depths in the canopy is poorly understood. This is partly caused by a lack of observational data to describe the vertical moisture distribution. In this study, we aimed to understand the sensitivity of L-band backscatter to water at different heights in a corn canopy. We studied changes in the contribution of different vertical layers to total backscatter throughout the season and during the day. Using detailed field measurements, we first determined the vertical distribution of moisture in the plants, and its seasonal and sub-daily variation. Then, these measurements were used to define different sublayers in a multi-layer water cloud model (WCM). To calibrate and validate the WCM, we used hyper-temporal tower-based polarimetric L-band scatterometer data. WCM simulations showed a shift in dominant scattering from the lowest 50 cm to 50–100 cm during the season in all polarizations, mainly due to leaf and ear growth and corresponding scattering and attenuation. Dew and rainfall interception raised sensitivity to upper parts of the canopy and lowered sensitivity to lower parts. The methodology and results presented in this study demonstrate the importance of the vertical moisture distribution on scattering from vegetation. These insights are essential to avoid misinterpretation and spurious artefacts during retrieval of soil moisture and vegetation parameters.
Agricultural SandboxNL: A national-scale database of parcel-level processed Sentinel-1 SAR data
Synthetic Aperture Radar (SAR) data handling, processing, and interpretation are barriers preventing a rapid uptake of SAR data by application specialists and non-expert domain users in the field of agricultural monitoring. To improve the accessibility of Sentinel-1 data, we have generated a reduced-volume, multi-year Sentinel-1 SAR database. It includes mean and standard deviation of VV, VH and VH/VV backscatter, pixel counts, geometry, crop type, local incidence angle and azimuth angle at parcel-level. The database uses around 3100 Sentinel-1 images (5 TB) to produce a 12 GB time series database for approximately 770,000 crop parcels over the Netherlands for a period of three years. The database can be queried by Sentinel-1 system parameters (e.g. relative orbit) or user application-specific parameters (e.g. crop type, spatial extent, time period) for parcel level assessment. The database can be used to accelerate the development of new tools, applications and methodologies for agricultural and water related applications, such as parcel-level crop bio-geophysical parameter estimation, inter-annual variability analysis, drought monitoring, grassland monitoring and agricultural management decision-support.Measurement(s)parcel-level backscatter • cross-ratioTechnology Type(s)SAR remote sensing • Sentinel-1 • Google Earth EngineSample Characteristic - LocationThe Netherlands
The influence of vegetation water dynamics on the ASCAT backscatter–incidence angle relationship in the Amazon
Microwave observations are sensitive to plant water content and could therefore provide essential information on biomass and plant water status in ecological and agricultural applications. The combined data record of the C-band scatterometers on the European Remote-Sensing Satellites (ERS)-1/2, the Metop (Meteorological Operational satellite) series, and the planned Metop Second Generation satellites will span over 40 years, which would provide a long-term perspective on the role of vegetation in the climate system. Recent research has indicated that the unique viewing geometry of the Advanced SCATterometer (ASCAT) could be exploited to observe vegetation water dynamics. The incidence angle dependence of backscatter can be described with a second order polynomial, the slope and curvature of which are related to vegetation. In a study limited to grasslands, seasonal cycles, spatial patterns, and interannual variability in the slope and curvature were found to vary among grassland types and were attributed to differences in moisture availability, growing season length and phenological changes. To exploit ASCAT slope and curvature for global vegetation monitoring, their dynamics over a wider range of vegetation types needs to be quantified and explained in terms of vegetation water dynamics. Here, we compare ASCAT data with meteorological data and GRACE equivalent water thickness (EWT) to explain the dynamics of ASCAT backscatter, slope, and curvature in terms of moisture availability and demand. We consider differences in the seasonal cycle, diurnal differences, and the response to the 2010 and 2015 droughts across ecoregions in the Amazon basin and surroundings. Results show that spatial and temporal patterns in backscatter reflect moisture availability indicated by GRACE EWT. Slope and curvature dynamics vary considerably among the ecoregions. The evergreen forests, often used as a calibration target, exhibit very stable behavior, even under drought conditions. The limited seasonal variation follows changes in the radiation cycle and may indicate phenological changes such as litterfall. In contrast, the diversity of land cover types within the Cerrado region results in considerable heterogeneity in terms of the seasonal cycle and the influence of drought on both slope and curvature. Seasonal flooding in forest and savanna areas also produced a distinctive signature in terms of the backscatter as a function of incidence angle. This improved understanding of the incidence angle behavior of backscatter increases our ability to interpret and make optimal use of the ASCAT data record and vegetation optical depth products for vegetation monitoring.
Impact of Soil Moisture Data Resolution on Soil Moisture and Surface Heat Flux Estimates through Data Assimilation: A Case Study in the Southern Great Plains
The spatial heterogeneity and temporal variation of soil moisture and surface heat fluxes are key to many geophysical and environmental studies. It has been demonstrated that they can be mapped by assimilating soil thermal and wetness information into surface energy balance models. The aim of this work is to determine whether enhancing the spatial resolution or temporal sampling frequency of soil moisture data could improve soil moisture or surface heat flux estimates. Two experiments are conducted in an area mainly covered by grassland, and land surface temperature (LST) observations from the Geostationary Operational Environmental Satellite (GOES) mission are assimilated together with either an enhanced L-band passive soil moisture product (9 km, 2–3 days) from the Soil Moisture Active Passive (SMAP) mission or a merged product (36 km, quasi-daily) from the SMAP and the Soil Moisture Ocean Salinity (SMOS) mission. The results suggest that the availability of soil moisture observations is increased by 41% after merging data from the SMAP and the SMOS missions. A comparison with results from a previous study that assimilated a coarser SMAP soil moisture product (36 km, 2–3 days) suggests that enhancing the temporal sampling frequency of soil moisture observations leads to improved soil moisture estimates at both the surface and root zone, and the largest improvement is seen in the bias metric (0.008 and 0.007 m3 m−3 on average at the surface and root zone, respectively). Enhancing the spatial resolution, however, does not significantly improve soil moisture estimates, particularly at the surface. Surface heat flux estimates from assimilating soil moisture data of different spatial or temporal resolutions are very similar.
Improving estimates of water resources in a semi-arid region by assimilating GRACE data into the PCR-GLOBWB hydrological model
An accurate estimation of water resources dynamics is crucial for proper management of both agriculture and the local ecology, particularly in semi-arid regions. Imperfections in model physics, uncertainties in model land parameters and meteorological data, as well as the human impact on land changes often limit the accuracy of hydrological models in estimating water storages. To mitigate this problem, this study investigated the assimilation of terrestrial water storage variation (TWSV) estimates derived from the Gravity Recovery And Climate Experiment (GRACE) data using an ensemble Kalman filter (EnKF) approach. The region considered was the Hexi Corridor in northern China. The hydrological model used for the analysis was PCR-GLOBWB, driven by satellite-based forcing data from April 2002 to December 2010. The impact of the GRACE data assimilation (DA) scheme was evaluated in terms of the TWSV, as well as the variation of individual hydrological storage estimates. The capability of GRACE DA to adjust the storage level was apparent not only for the entire TWSV but also for the groundwater component. In this study, spatially correlated errors in GRACE data were taken into account, utilizing the full error variance–covariance matrices provided as a part of the GRACE data product. The benefits of this approach were demonstrated by comparing the EnKF results obtained with and without taking into account error correlations. The results were validated against in situ groundwater data from five well sites. On average, the experiments showed that GRACE DA improved the accuracy of groundwater storage estimates by as much as 25 %. The inclusion of error correlations provided an equal or greater improvement in the estimates. In contrast, a validation against in situ streamflow data from two river gauges showed no significant benefits of GRACE DA. This is likely due to the limited spatial and temporal resolution of GRACE observations. Finally, results of the GRACE DA study were used to assess the status of water resources over the Hexi Corridor over the considered 9-year time interval. Areally averaged values revealed that TWS, soil moisture, and groundwater storages over the region decreased with an average rate of approximately 0.2, 0.1, and 0.1 cm yr−1 in terms of equivalent water heights, respectively. A particularly rapid decline in TWS (approximately −0.4 cm yr−1) was seen over the Shiyang River basin located in the southeastern part of Hexi Corridor. The reduction mostly occurred in the groundwater layer. An investigation of the relationship between water resources and agricultural activities suggested that groundwater consumption required to maintain crop yield in the growing season for this specific basin was likely the cause of the groundwater depletion.