Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Stefanowicz, Wiktor"
Sort by:
Manipulating Mn–Mgk cation complexes to control the charge- and spin-state of Mn in GaN
Owing to the variety of possible charge and spin states and to the different ways of coupling to the environment, paramagnetic centres in wide band-gap semiconductors and insulators exhibit a strikingly rich spectrum of properties and functionalities, exploited in commercial light emitters and proposed for applications in quantum information. Here we demonstrate, by combining synchrotron techniques with magnetic, optical and ab initio studies, that the codoping of GaN:Mn with Mg allows to control the Mn n + charge and spin state in the range 3≤ n ≤5 and 2≥ S ≥1. According to our results, this outstanding degree of tunability arises from the formation of hitherto concealed cation complexes Mn-Mg k , where the number of ligands k is pre-defined by fabrication conditions. The properties of these complexes allow to extend towards the infrared the already remarkable optical capabilities of nitrides, open to solotronics functionalities and generally represent a fresh perspective for magnetic semiconductors.
GaMnN epitaxial films with high magnetization
We report on the fabrication of pseudomorphic wurtzite GaMnN grown on GaN with Mn concentrations up to 10% using molecular beam epitaxy. According to Rutherford backscattering the Mn ions are mainly at the Ga-substitutional positions, and they are homogeneously distributed according to depth-resolved Auger-electron spectroscopy and secondary-ion mass-spectroscopy measurements. A random Mn distribution is indicated by transmission electron microscopy, no Mn-rich clusters are present for optimized growth conditions. A linear increase of the c-lattice parameter with increasing Mn concentration is found using x-ray diffraction. The ferromagnetic behavior is confirmed by superconducting quantum-interference measurements showing saturation magnetizations of up to 150 emu/cm^3.
Manipulating Mn--Mg\\(_k\\) cation complexes to control the charge- and spin-state of Mn in GaN
Owing to the variety of possible charge and spin states and to the different ways of coupling to the environment, paramagnetic centres in wide band-gap semiconductors and insulators exhibit a strikingly rich spectrum of properties and functionalities, exploited in commercial light emitters and proposed for applications in quantum information. Here we demonstrate, by combining synchrotron techniques with magnetic, optical and \\emph{ab initio} studies, that the codoping of GaN:Mn with Mg allows to control the Mn\\(^{n+}\\) charge and spin state in the range \\(3\\le n\\le 5\\) and \\(2\\ge S\\ge 1\\). According to our results, this outstanding degree of tunability arises from the formation of hitherto concealed cation complexes Mn-Mg\\(_k\\), where the number of ligands \\(k\\) is pre-defined by fabrication conditions. The properties of these complexes allow to extend towards the infrared the already remarkable optical capabilities of nitrides, open to solotronics functionalities, and generally represent a fresh perspective for magnetic semiconductors.
Magnetic anisotropy of epitaxial (Ga,Mn)As on (113)A GaAs
The temperature dependence of magnetic anisotropy in (113)A (Ga,Mn)As layers grown by molecular beam epitaxy is studied by means of superconducting quantum interference device (SQUID) magnetometry as well as by ferromagnetic resonance (FMR) and magnetooptical effects. Experimental results are described considering cubic and two kinds of uniaxial magnetic anisotropy. The magnitude of cubic and uniaxial anisotropy constants is found to be proportional to the fourth and second power of saturation magnetization, respectively. Similarly to the case of (001) samples, the spin reorientation transition from uniaxial anisotropy with the easy along the [-1, 1, 0] direction at high temperatures to the biaxial anisotropy at low temperatures is observed around 25 K. The determined values of the anisotropy constants have been confirmed by FMR studies. As evidenced by investigations of the polar magnetooptical Kerr effect, the particular combination of magnetic anisotropies allows the out-of-plane component of magnetization to be reversed by an in-plane magnetic field. Theoretical calculations within the p-d Zener model explain the magnitude of the out-of-plane uniaxial anisotropy constant caused by epitaxial strain, but do not explain satisfactorily the cubic anisotropy constant. At the same time the findings point to the presence of an additional uniaxial anisotropy of unknown origin. Similarly to the case of (001) films, this additional anisotropy can be explained by assuming the existence of a shear strain. However, in contrast to the (001) samples, this additional strain has an out-of-the-(001)-plane character.
Structural and paramagnetic properties of dilute Ga1-xMnxN
Systematic investigations of the structural and magnetic properties of single crystal (Ga,Mn)N films grown by metal organic vapor phase epitaxy are presented. High resolution transmission electron microscopy, synchrotron x-ray diffraction, and extended x-ray absorption fine structure studies do not reveal any crystallographic phase separation and indicate that Mn occupies Ga-substitutional sites in the Mn concentration range up to 1%. The magnetic properties as a function of temperature, magnetic field and its orientation with respect to the c-axis of the wurtzite structure can be quantitatively described by the paramagnetic theory of an ensemble of non-interacting Mn\\(^{3+}\\) ions in the relevant crystal field, a conclusion consistent with the x-ray absorption near edge structure analysis. A negligible contribution of Mn in the 2+ charge state points to a low concentration of residual donors in the studied films. Studies on modulation doped p-type (Ga,Mn)N/(Ga,Al)N:Mg heterostructures do not reproduce the high temperature robust ferromagnetism reported recently for this system.
ANN as a prognostic tool after treatment of non-seminoma testicular cancer
Testicular cancer is rare but is the most common cancer in males between 15 and 34 years of age. Two principal types of testicular cancer are distinguished: seminomas and non-seminomas. If detected early, the overall cure rate for testicular cancer exceeds 90%. In this study, artificial neural network (ANN) analysis as a prognostic tool was demonstrated regard to five year recurrence after the non-seminoma treatment. Data from 202 patients treated for non-seminoma were available for evaluation and comparison. A total of 32 variables were analysed using the ANN. The ANN approach, as an advanced multivariate data processing method, was demon-strated to provide objective prognostic data. Some of these prognostic factors are consistent or even imperceptible with previously evaluated by other statistical methods.