Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
30 result(s) for "Stefels, Jacqueline"
Sort by:
The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems
The Arctic sea-ice-scape is rapidly transforming. Increasing light penetration will initiate earlier seasonal primary production. This earlier growing season may be accompanied by an increase in ice algae and phytoplankton biomass, augmenting the emission of dimethylsulfide and capture of carbon dioxide. Secondary production may also increase on the shelves, although the loss of sea ice exacerbates the demise of sea-ice fauna, endemic fish and megafauna. Sea-ice loss may also deliver more methane to the atmosphere, but warmer ice may release fewer halogens, resulting in fewer ozone depletion events. The net changes in carbon drawdown are still highly uncertain. Despite large uncertainties in these assessments, we expect disruptive changes that warrant intensified long-term observations and modelling efforts.The Arctic is warming and undergoing rapid ice loss. This Perspective considers how changes in sea ice will impact the biogeochemistry and associated ecosystems of the region while calling for more observations to improve our understanding of this complex system.
Impact of sea-ice melt on dimethyl sulfide (sulfoniopropionate) inventories in surface waters of Marguerite Bay, West Antarctic Peninsula
The Southern Ocean is a hotspot of the climate-relevant organic sulfur compound dimethyl sulfide (DMS). Spatial and temporal variability in DMS concentration is higher than in any other oceanic region, especially in the marginal ice zone. During a one-week expedition across the continental shelf of the West Antarctic Peninsula (WAP), from the shelf break into Marguerite Bay, in January 2015, spatial heterogeneity of DMS and its precursor dimethyl sulfoniopropionate (DMSP) was studied and linked with environmental conditions, including sea-ice melt events. Concentrations of sulfur compounds, particulate organic carbon (POC) and chlorophyll a in the surface waters varied by a factor of 5-6 over the entire transect. DMS and DMSP concentrations were an order of magnitude higher than currently inferred in climatologies for the WAP region. Particulate DMSP concentrations were correlated most strongly with POC and the abundance of haptophyte algae within the phytoplankton community, which, in turn, was linked with sea-ice melt. The strong sea-ice signal in the distribution of DMS(P) implies that DMS(P) production is likely to decrease with ongoing reductions in sea-ice cover along the WAP. This has implications for feedback processes on the region's climate system. This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.
Annual patterns in phytoplankton phenology in Antarctic coastal waters explained by environmental drivers
Coastal zones of Antarctica harbor rich but highly variable phytoplankton communities. The mechanisms that control the dynamics of these communities are not well defined. Here we elucidate the mechanisms that drive seasonal species succession, based on algal photophysiological characteristics and environmental factors. For this, phytoplankton community structure together with oceanographic parameters was studied over a 5-year period (2012–2017) at Rothera Station at Ryder Bay (Western Antarctic Peninsula). Algal pigment patterns and photophysiological studies based on fluorescence analyses were combined with data from the Rothera Time-Series program. Considerable interannual variation was observed, related to variations in wind-mixing, ice cover and an El Niño event. Clear patterns in the succession of algal classes became manifest when combining the data collected over the five successive years. In spring, autotrophic flagellates with a high light affinity were the first to profit from increasing light and sea ice melt. These algae most likely originated from sea-ice communities, stressing the role of sea ice as a seeding vector for the spring bloom. Diatoms became dominant towards summer in more stratified and warmer surface waters. These communities displayed significantly lower photo-flexibility than spring communities. There are strong indications for mixotrophy in cryptophytes, which would explain much of their apparently random occurrence. Climate models predict continuing retreat of Antarctic sea-ice during the course of this century. For the near-future we predict that the marginal sea-ice zone will still harbor significant communities of haptophytes and chlorophytes, whereas increasing temperatures will mainly be beneficial for diatoms.
Macronutrient and carbon supply, uptake and cycling across the Antarctic Peninsula shelf during summer
The West Antarctic Peninsula shelf is a region of high seasonal primary production which supports a large and productive food web, where macronutrients and inorganic carbon are sourced primarily from intrusions of warm saline Circumpolar Deep Water. We examined the cross-shelf modification of this water mass during mid-summer 2015 to understand the supply of nutrients and carbon to the productive surface ocean, and their subsequent uptake and cycling. We show that nitrate, phosphate, silicic acid and inorganic carbon are progressively enriched in subsurface waters across the shelf, contrary to cross-shelf reductions in heat, salinity and density. We use nutrient stoichiometric and isotopic approaches to invoke remineralization of organic matter, including nitrification below the euphotic surface layer, and dissolution of biogenic silica in deeper waters and potentially shelf sediment porewaters, as the primary drivers of cross-shelf enrichments. Regenerated nitrate and phosphate account for a significant proportion of the total pools of these nutrients in the upper ocean, with implications for the seasonal carbon sink. Understanding nutrient and carbon dynamics in this region now will inform predictions of future biogeochemical changes in the context of substantial variability and ongoing changes in the physical environment. This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.
On the phenology and seeding potential of sea-ice microalgal species
Sea ice is an important habitat for a wide variety of microalgal species. Depending on the species composition, sea ice can be a seeding source for pelagic phytoplankton blooms after ice melt in spring. Sea-ice algal communities were studied over 2 full winter seasons in 2014 and 2016 at Rothera Research Station, situated at the Western Antarctic Peninsula (WAP). Algal pigment patterns and microscopic observations were combined with photophysiological studies based on fluorescence analyses to monitor and explain the phenology of ice-algal species. Clear patterns in species succession were identified. Young sea ice contained a mixture of algal species including dinoflagellates, cryptophytes and diatoms like Chaetoceros spp. and Fragillariopsis spp. In winter, severe environmental conditions resulted in a decline in species diversity and selection towards heterotrophy. Pennate diatoms like Amphiprora kufferathii and Berkeleya adeliensis were the first to dominate the nutrient-enriched bottom-ice layers in early spring. The bottom communities exhibited a remarkably stable value for the photoadaptation parameter, Ek, of circa 25 µmol photons m–2 s–1. Whereas pennate diatoms were most abundant in spring ice, the initial seeding event linked to ice melt was associated with flagellate species. Haptophyte species like Phaeocystis antarctica and prymnesiophytes like Pyramimonas spp. best sustained the transition from sea ice to seawater. Comparison with previous studies shows that the seeding patterns observed in Ryder Bay were characteristic over the wider sea-ice domain, Arctic and Antarctic. Over the course of this century, the WAP is predicted to experience continuing thinning and decline in sea-ice cover. For the near future, we expect that especially microalgal communities of haptophytes and chlorophytes will benefit from the changes, with yet unknown implications for carbon fluxes and higher trophic levels.
Commentary on the outputs and future of Biogeochemical Exchange Processes at Sea-Ice Interfaces (BEPSII)
Biogeochemical processes associated with sea ice are still inadequately described and poorly represented in models, making it difficult to properly quantify the impacts of climate change in polar regions. Within the framework of the international Scientific Committee of Ocean Research (SCOR) working group 140, BEPSII, a community of sea-ice biogeochemical scientists established guidelines for the measurement of biogeochemical processes in sea ice, collated observed data, synthesized knowledge of sea-ice biogeochemical processes, and identified the feedbacks between biogeochemical and physical processes at the terrestrial-ocean-ice-snow-atmosphere interfaces and within the sea-ice matrix. Many of these results are presented in Elementa’s Special Feature on BEPSII. By bringing together experimentalists and modelers, major improvements of sea-ice biochemistry models have been achieved which are anticipated to affect models on micro- to global scales. However, large gaps still exist in our understanding of detailed biogeochemical processes in sea ice, their seasonal evolution and their interactions with surrounding environments. The BEPSII community recommends continued focus on the development of reproducible methods and techniques for reliable inter-study comparisons, to enhance our understanding in areas where gaps have been identified via coordinated process studies combining modeling tools, laboratory experiments and field studies, and on the use of such studies to develop conceptual models helping us to understand the overall system.
Dimethyl Sulfide Triggers Search Behavior in Copepods
The oceans are nutritionally dilute, and finding food is a major challenge for many zooplanktonic predators. Chemodetection is necessary for successful prey-capture, but little is known about the infochemicals involved in the interaction between herbivorous copepods and their phytoplankton prey. We used females of Temora longicornis to investigate chemodetection of dimethyl sulfide (DMS) in this calanoid copepod and quantified its behavioral response to plumes of DMS using video-microscopy in combination with laser-sheet particle image velocimetry (PIV). Slow injection of a $1-\\mu mol L^{-1} DMS$ plume into the feeding current resulted in a characteristic behavioral pattern (\"tail-flapping\"), a redirection of flow equivalent to 30% of the average current velocity, and changes in the location of flow-induced vortices. In free-swimming individuals, this likely results in somersault-type movements that are associated with search behavior in copepods. In comparison to seawater controls, DMS injections significantly increased the average number of tail-flaps per copepod during the first 2 s after exposure to DMS gradients. Our results demonstrate that copepods can detect and react to plumes of DMS and suggest that this biogenic trace gas can influence the structure and function of pelagic foodwebs.
Species-Level Differences in Osmoprotectants and Antioxidants Contribute to Stress Tolerance of Quercus robur L., and Q. cerris L. Seedlings under Water Deficit and High Temperatures
The general aim of this work was to compare the leaf-level responses of different protective components to water deficit and high temperatures in Quercus cerris L. and Quercus robur L. Several biochemical components of the osmotic adjustment and antioxidant system were investigated together with changes in hormones. Q. cerris and Q. robur seedlings responded to water deficit and high temperatures by: (1) activating a different pattern of osmoregulation and antioxidant mechanisms depending on the species and on the nature of the stress; (2) upregulating the synthesis of a newly-explored osmoprotectant, dimethylsulphoniopropionate (DMSP); (3) trading-off between metabolites; and (4) modulating hormone levels. Under water deficit, Q. cerris had a higher antioxidant capacity compared to Q. robur, which showed a lower investment in the antioxidant system. In both species, exposure to high temperatures induced a strong osmoregulation capacity that appeared largely conferred by DMSP in Q. cerris and by glycine betaine in Q. robur. Collectively, the more stress-responsive compounds in each species were those present at a significant basal level in non-stress conditions. Our results were discussed in terms of pre-adaptation and stress-induced metabolic patterns as related to species-specific stress tolerance features.
Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling
Seawater concentrations of the climate-cooling, volatile sulphur compound dimethylsulphide (DMS) are the result of numerous production and consumption processes within the marine ecosystem. Due to this complex nature, it is difficult to predict temporal and geographical distribution patterns of DMS concentrations and the inclusion of DMS into global ocean climate models has only been attempted recently. Comparisons between individual model predictions, and ground-truthing exercises revealed that information on the functional relationships between physical and chemical ecosystem parameters, biological productivity and the production and consumption of DMS and its precursor dimethylsulphoniopropionate (DMSP) is necessary to further refine future climate models. In this review an attempt is made to quantify these functional relationships. The description of processes includes: (1) parameters controlling DMSP production such as species composition and abiotic factors; (2) the conversion of DMSP to DMS by algal and bacterial enzymes; (3) the fate of DMSP-sulphur due to, e.g., grazing, microbial consumption and sedimentation and (4) factors controlling DMS removal from the water column such as microbial consumption, photo-oxidation and emission to the atmosphere. We recommend the differentiation of six phytoplankton groups for inclusion in future models: eukaryotic and prokaryotic picoplankton, diatoms, dinoflagellates, and other phytoflagellates with and without DMSP-lyase activity. These functional groups are characterised by their cell size, DMSP content, DMSP-lyase activity and interactions with herbivorous grazers. In this review, emphasis is given to ecosystems dominated by the globally relevant haptophytes Emiliania huxleyi and Phaeocystis sp., which are important DMS and DMSP producers.
Limitation of dimethylsulfoniopropionate synthesis at high irradiance in natural phytoplankton communities of the Tropical Atlantic
Predictions of the ocean-atmosphere flux of dimethyl sulfide will be improved by understanding what controls seasonal and regional variations in dimethylsulfoniopropionate (DMSP) production. To investigate the influence of high levels of irradiance including ultraviolet radiation (UVR), on DMSP synthesis rates (μDMSP) and inorganic carbon fixation (μPOC) by natural phytoplankton communities, nine experiments were carried out at different locations in the low nutrient, high light environment of the northeastern Tropical Atlantic. Rates of μDMSP and μPOC were determined by measuring the incorporation of inorganic 13C into DMSP and particulate organic carbon. Based on measurements over discrete time intervals during the day, a unique μDMSP vs. irradiance (P vs. E) relationship was established. Comparison is made with the P vs. E relationship for μPOC, indicating that light saturation of μDMSP occurs at similar irradiance to μPOC and is closely coupled to carbon fixation on a diel basis. Photoinhibition during the middle of the day was exacerbated by exposure to UVR, causing an additional 55–60% inhibition of both μDMSP and μPOC at the highest light levels. In addition, decreased production of DMSP in response to UVR-induced photoxidative stress, contrasted with the increased net synthesis of photoprotective xanthophyll pigments. Together these results indicate that DMSP production by phytoplankton in the tropical ocean is not regulated in the short term by the necessity to control increasing photooxidative stress as irradiance increases during the day. The study provides new insight into the regulation of resource allocation into this biogeochemically important, multi-functional compatible solute.