Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
1,563
result(s) for
"Stein, Daniel"
Sort by:
Human social sensing is an untapped resource for computational social science
by
Galesic, Mirta
,
Dalege, Jonas
,
Stein, Daniel L.
in
706/689/477/2811
,
706/689/523
,
706/689/680
2021
The ability to ‘sense’ the social environment and thereby to understand the thoughts and actions of others allows humans to fit into their social worlds, communicate and cooperate, and learn from others’ experiences. Here we argue that, through the lens of computational social science, this ability can be used to advance research into human sociality. When strategically selected to represent a specific population of interest, human social sensors can help to describe and predict societal trends. In addition, their reports of how they experience their social worlds can help to build models of social dynamics that are constrained by the empirical reality of human social systems.
The ability of people to understand the thoughts and actions of others—known as social sensing—can be combined with computational social science to advance research into human sociality.
Journal Article
Dynamics of Demand for Index Insurance: Evidence from a Long-Run Field Experiment
by
Cole, Shawn
,
Stein, Daniel
,
Tobacman, Jeremy
in
Agricultural economics
,
Consumers
,
Crop insurance
2014
This paper estimates how experimentally-manipulated experiences with a novel financial product, rainfall index insurance, affect subsequent insurance demand. Using a seven-year panel, we develop three main findings. First, recent experience matters for demand, consistent with overinference from small samples. Second, spillovers also matter, in the sense that the recent payout experience of village co-residents affects insurance demand about as much as one's own recent payout experience. Third, the spillover effect decays as time passes while the effect of one's own experience does not. We discuss implications of this analysis for commercial sustainability of this complicated but promising risk management technology.
Journal Article
Neisseria gonorrhoeae induces local secretion of IL-10 at the human cervix to promote colonization
by
Dai, Yiwei
,
Edwards, Vonetta L.
,
Song, Wenxia
in
Antigens
,
Antigens, CD - metabolism
,
Asymptomatic
2025
Gonorrhea, caused by the human-restricted pathogen Neisseria gonorrhoeae, is a commonly reported sexually transmitted infection. Since most infections in women are asymptomatic, the true number of infections is likely much higher than reported. How gonococci (GC) colonize women's cervixes without triggering symptoms remains elusive. Using a human cervical tissue explant model, we found that GC inoculation increased the local secretion of both proinflammatory (IL-1β and TNF-α) and antiinflammatory (IL-10) cytokines during the first 24 hours of infection. Cytokine induction required GC expression of Opa isoforms that bind the host receptors carcinoembryonic antigen-related cell adhesion molecules (CEACAMs). GC inoculation induced NF-κB activation in both cervical epithelial and subepithelial cells. However, inhibition of NF-κB activation, which reduced GC-induced IL-1β and TNF-α, did not affect GC colonization. Neutralizing IL-10 or blocking IL-10 receptors by antibodies reduced GC colonization by increasing epithelial shedding and epithelial cell-cell junction disassembly. Inhibition of the CEACAM downstream signaling molecule SHP1/2, which reduced GC colonization and increased epithelial shedding, decreased GC-induced IL-10 secretion. These results show that GC induce local secretion of IL-10, a potent antiinflammatory cytokine, at the cervix by engaging the host CEACAMs to prevent GC-colonizing epithelial cells from shedding, providing a potential mechanism for GC asymptomatic colonization in women.
Journal Article
Gonococcal invasion into epithelial cells depends on both cell polarity and ezrin
by
Wang, Liang-Chun
,
Di Benigno, Sofia
,
Song, Wenxia
in
Actin
,
Actins - metabolism
,
Asymptomatic
2021
Neisseria gonorrhoeae (GC) establishes infection in women from the cervix, lined with heterogeneous epithelial cells from non-polarized stratified at the ectocervix to polarized columnar at the endocervix. We have previously shown that GC differentially colonize and transmigrate across the ecto and endocervical epithelia. However, whether and how GC invade into heterogeneous cervical epithelial cells is unknown. This study examined GC entry of epithelial cells with various properties, using human cervical tissue explant and non-polarized/polarized epithelial cell line models. While adhering to non-polarized and polarized epithelial cells at similar levels, GC invaded into non-polarized more efficiently than polarized epithelial cells. The enhanced GC invasion in non-polarized epithelial cells was associated with increased ezrin phosphorylation, F-actin and ezrin recruitment to GC adherent sites, and the elongation of GC-associated microvilli. Inhibition of ezrin phosphorylation inhibited F-actin and ezrin recruitment and microvilli elongation, leading to a reduction in GC invasion. The reduced GC invasion in polarized epithelial cells was associated with non-muscle myosin II-mediated F-actin disassembly and microvilli denudation at GC adherence sites. Surprisingly, intraepithelial GC were only detected inside epithelial cells shedding from the cervix by immunofluorescence microscopy, but not significantly in the ectocervical and the endocervical regions. We observed similar ezrin and F-actin recruitment in exfoliated cervical epithelial cells but not in those that remained in the ectocervical epithelium, as the luminal layer of ectocervical epithelial cells expressed ten-fold lower levels of ezrin than those beneath. However, GC inoculation induced F-actin reduction and myosin recruitment in the endocervix, similar to what was seen in polarized epithelial cells. Collectively, our results suggest that while GC invade non-polarized epithelial cells through ezrin-driven microvilli elongation, the apical polarization of ezrin and F-actin inhibits GC entry into polarized epithelial cells.
Journal Article
Neisseria gonorrhoeae infects the heterogeneous epithelia of the human cervix using distinct mechanisms
by
Wang, Liang-Chun
,
Di Benigno, Sofia
,
Song, Wenxia
in
Antigens
,
Bacteria
,
Bacterial Adhesion - physiology
2019
Sexually transmitted infections are a critical public health issue. However, the mechanisms underlying sexually transmitted infections in women and the link between the infection mechanism and the wide range of clinical outcomes remain elusive due to a lack of research models mimicking human infection in vivo. We established a human cervical tissue explant model to mimic local Neisseria gonorrhoeae (GC) infections. We found that GC preferentially colonize the ectocervix by activating integrin-β1, which inhibits epithelial shedding. GC selectively penetrate into the squamocolumnar junction (TZ) and endocervical epithelia by inducing β-catenin phosphorylation, which leads to E-cadherin junction disassembly. Epithelial cells in various cervical regions differentially express carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), the host receptor for GC opacity-associated proteins (OpaCEA). Relatively high levels were detected on the luminal membrane of ecto/endocervical epithelial cells but very low levels intracellularly in TZ epithelial cells. CEACAM-OpaCEA interaction increased ecto/endocervical colonization and reduced endocervical penetration by increasing integrin-β1 activation and inhibiting β-catenin phosphorylation respectively, through CEACAM downstream signaling. Thus, the intrinsic properties of cervical epithelial cells and phase-variation of bacterial surface molecules both play a role in controlling GC infection mechanisms and infectivity, preferential colonization or penetration, potentially leading to asymptomatic or symptomatic infection.
Journal Article
Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence
2021
Chronic, sustained exposure to stressors can profoundly affect tissue homeostasis, although the mechanisms by which these changes occur are largely unknown. Here we report that the stress hormone corticosterone—which is derived from the adrenal gland and is the rodent equivalent of cortisol in humans—regulates hair follicle stem cell (HFSC) quiescence and hair growth in mice. In the absence of systemic corticosterone, HFSCs enter substantially more rounds of the regeneration cycle throughout life. Conversely, under chronic stress, increased levels of corticosterone prolong HFSC quiescence and maintain hair follicles in an extended resting phase. Mechanistically, corticosterone acts on the dermal papillae to suppress the expression of
Gas6
, a gene that encodes the secreted factor growth arrest specific 6. Restoring
Gas6
expression overcomes the stress-induced inhibition of HFSC activation and hair growth. Our work identifies corticosterone as a systemic inhibitor of HFSC activity through its effect on the niche, and demonstrates that the removal of such inhibition drives HFSCs into frequent regeneration cycles, with no observable defects in the long-term.
Stress inhibits hair growth in mice through the release of the stress hormone corticosterone from the adrenal glands, which inhibits the activation of hair follicle stem cells by suppressing the expression of a secreted factor, GAS6, from the dermal niche.
Journal Article