Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
72 result(s) for "Steinbacher, Peter"
Sort by:
The applicability of forensic time since death estimation methods for buried bodies in advanced decomposition stages
Estimation of the postmortem interval in advanced postmortem stages is a challenging task. Although there are several approaches available for addressing postmortem changes of a (human) body or its environment (ecologically and/or biochemically), most are restricted to specific timeframes and/or individual and environmental conditions. It is well known, for instance, that buried bodies decompose in a remarkably different manner than on the ground surface. However, data on how established methods for PMI estimation perform under these conditions are scarce. It is important to understand whether and how postmortem changes are affected under burial conditions, if corrective factors could be conceived, or if methods have to be excluded for respective cases. We present the first multi-methodological assessment of human postmortem decomposition carried out on buried body donors in Europe, at the Amsterdam Research Initiative for Sub-surface Taphonomy and Anthropology (ARISTA) in the Netherlands. We used a multidisciplinary approach to investigate postmortem changes of morphology, skeletal muscle protein decomposition, presence of insects and other necrophilous animals as well as microbial communities (i.e., microbiomes) from August to November 2018 associated with two complete body exhumations and eight partial exhumations. Our results clearly display the current possibilities and limitations of methods for PMI estimation in buried remains and provide a baseline for future research and application.
New Aspects on the Structure of Neutrophil Extracellular Traps from Chronic Obstructive Pulmonary Disease and In Vitro Generation
Polymorphonuclear neutrophils have in recent years attracted new attention due to their ability to release neutrophil extracellular traps (NETs). These web-like extracellular structures deriving from nuclear chromatin have been depicted in ambiguous roles between antimicrobial defence and host tissue damage. NETs consist of DNA strands of varying thickness and are decorated with microbicidal and cytotoxic proteins. Their principal structure has in recent years been characterised at molecular and ultrastructural levels but many features that are of direct relevance to cytotoxicity are still incompletely understood. These include the extent of chromatin decondensation during NET formation and the relative amounts and spatial distribution of the microbicidal components within the NET. In the present work, we analyse the structure of NETs found in induced sputum of patients with acutely exacerbated chronic obstructive pulmonary disease (COPD) using confocal laser microscopy and electron microscopy. In vitro induced NETs from human neutrophils serve for purposes of comparison and extended analysis of NET structure. Results demonstrate that COPD sputa are characterised by the pronounced presence of NETs and NETotic neutrophils. We provide new evidence that chromatin decondensation during NETosis is most extensive and generates substantial amounts of double-helix DNA in 'beads-on-a-string' conformation. New information is also presented on the abundance and location of neutrophil elastase (NE) and citrullinated histone H3 (citH3). NE occurs in high densities in nearly all non-fibrous constituents of the NETs while citH3 is much less abundant. We conclude from the results that (i) NETosis is an integral part of COPD pathology; this is relevant to all future research on the etiology and therapy of the disease; and that (ii) release of 'beads-on-a-string' DNA studded with non-citrullinated histones is a common feature of in vivo NETosis; this is of relevance to both the antimicrobial and the cytotoxic effects of NETs.
Postmortem Protein Degradation as a Tool to Estimate the PMI: A Systematic Review
Objectives: We provide a systematic review of the literature to evaluate the current research status of protein degradation-based postmortem interval (PMI) estimation. Special attention is paid to the applicability of the proposed approaches/methods in forensic routine practice. Method: A systematic review of the literature on protein degradation in tissues and organs of animals and humans was conducted. Therefore, we searched the scientific databases Pubmed and Ovid for publications until December 2019. Additional searches were performed in Google Scholar and the reference lists of eligible articles. Results: A total of 36 studies were included. This enabled us to consider the degradation pattern of over 130 proteins from 11 different tissues, studied with different methods including well-established and modern approaches. Although comparison between studies is complicated by the heterogeneity of study designs, tissue types, methods, proteins and outcome measurement, there is clear evidence for a high explanatory power of protein degradation analysis in forensic PMI analysis. Conclusions: Although only few approaches have yet exceeded a basic research level, the current research status provides strong evidence in favor of the applicability of a protein degradation-based PMI estimation method in routine forensic practice. Further targeted research effort towards specific aims (also addressing influencing factors and exclusion criteria), especially in human tissue will be required to obtain a robust, reliable laboratory protocol, and collect sufficient data to develop accurate multifactorial mathematical decomposition models.
Thermal experience during embryogenesis contributes to the induction of dwarfism in whitefish Coregonus lavaretus
Ecotype pairs provide well-suited model systems for study of intraspecific phenotypical diversification of animals. However, little is still known about the processes that account for the development of different forms and sizes within a species, particularly in teleosts. Here, embryos of a normal-growing 'large' form and a dwarf form of whitefish Coregonus lavaretus were incubated at two temperatures that are usually experienced at their own spawning sites (2°C for the normal and 6°C for the dwarf form). All fish were subjected to similar thermal treatment after hatching. The present data demonstrate for the first time that different thermal experience in embryonic life has lasting effects on body and muscle growth of this ecotype pair and contributes to the development of the dwarf form. Thus, juvenile fish of the regular form are much smaller and have less muscle mass when pre-hatching thermal conditions were similar to those typical for the spawning sites of the dwarf form (6°C) than when subjected to conditions of their own spawning sites (2°C). Surprisingly, fish of the dwarf form exhibit a similar pattern of response to thermal history (2°-fish much larger than 6°-fish), indicating that in their case, normal spawning site temperature (6°C) is indeed likely to act as a growth limiting factor. Results also demonstrate that the hypertrophic and hyperplastic muscle growth modes are similarly affected by thermal history. Immunolabelling experiments for Pax7, H3P and Mef2 provide evidence that the cellular mechanisms behind the increased growth rates after cold incubation in both ecotypes are increased proliferation and reduced differentiation rates of muscle precursor cells. This is of major significance to aspects of ecological and developmental biology and from the evolutionary perspective.
Influencing Factors on Postmortem Protein Degradation for PMI Estimation: A Systematic Review
The present review provides an overview of the current research status on the effects of influencing factors on postmortem protein degradation used to estimate the PMI (postmortem interval). Focus was set on characteristics of internal and external influencing factors and the respective susceptibility and/or robustness of protein degradation. A systematic literature search up to December 2020 was conducted on the effect of influencing factors investigated in the context of postmortem protein degradation in the tissues of animals and humans using the scientific databases PubMed and Google Scholar, as well as the reference lists of eligible articles. We identified ten studies investigating a total of seven different influencing factors in degrading tissues/organs (n = 7) of humans and animals using six different methodological approaches. Although comparison of study outcomes was impeded by the high variety of investigated factors, and by high risk of bias appraisals, it was evident that the majority of the influencing factors concerned affected protein degradation, thus being able to modulate the precision of protein degradation-based PMI estimation. The results clearly highlight the need for a thorough screening for corresponding factors to enable the introduction of appropriate correction factors and exclusion criteria. This seems especially relevant for the protein degradation-based study of human PMI to increase the reliability and precision of the method and to facilitate a broader applicability in routine forensic casework.
The Single Nucleotide Polymorphism Gly482Ser in the PGC-1α Gene Impairs Exercise-Induced Slow-Twitch Muscle Fibre Transformation in Humans
PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2). Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak). Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation.
From Mice to Men: An Evolutionary Conserved Breakdown of the Epidermal Calcium Gradient and Its Impact on the Cornified Envelope
In previous publications, we could establish that a hallmark of human skin aging is the breakdown of the epidermal calcium gradient. This redistribution of calcium has many implications, including a restructuring of the cornified envelope, a reduced epidermal barrier function, a change in lipid composition, a reduced skin hydration, and an increased skin pH. Especially the age-dependent change in the cornified envelope composition was solely studied in human foreskin samples. The aim of this study was to confirm that this effect is neither restricted to UV-protected skin area nor limited to a specific sex. In addition, we wanted to show that the collapse of the epidermal calcium gradient is not only a hallmark of human skin aging, but is also evolutionarily conserved in mammals. By using such techniques as IHC, Western blot analysis, and RT-PCR, we could demonstrate the following: (1) A change in the epidermal calcium gradient is in fact the most important sign of epidermal aging in mammals (as shown in female human eyelids and mouse skin samples of the external ear-shell); (2) The disturbed calcium homeostasis affects the expression and crosslinking of most cornified-envelope-specific genes such as loricrin and filaggrin. In this way, we could establish that the age-dependent altered composition of the cornified envelope is a typical sign of skin aging not only in humans, but in mice, too. This makes the mouse an important model organism to study these changes.
Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation
Background COPD is a progressive disease of the airways that is characterized by neutrophilic inflammation, a condition known to promote the excessive formation of neutrophil extracellular traps (NETs). The presence of large amounts of NETs has recently been demonstrated for a variety of inflammatory lung diseases including cystic fibrosis, asthma and exacerbated COPD. Objective We test whether excessive NET generation is restricted to exacerbation of COPD or whether it also occurs during stable periods of the disease, and whether NET presence and amount correlates with the severity of airflow limitation. Patients, materials and methods Sputum samples from four study groups were examined: COPD patients during acute exacerbation, patients with stable disease, and smoking and non-smoking controls without airflow limitation. Sputum induction followed the ECLIPSE protocol. Confocal laser microscopy (CLSM) and electron microscopy were used to analyse samples. Immunolabelling and fluorescent DNA staining were applied to trace NETs and related marker proteins. CLSM specimens served for quantitative evaluation. Results Sputum of COPD patients is clearly characterised by NETs and NET-forming neutrophils. The presence of large amounts of NET is associated with disease severity ( p  < 0.001): over 90 % in exacerbated COPD, 45 % in stable COPD, and 25 % in smoking controls, but less than 5 % in non-smokers. Quantification of NET-covered areas in sputum preparations confirms these results. Conclusions NET formation is not confined to exacerbation but also present in stable COPD and correlates with the severity of airflow limitation. We infer that NETs are a major contributor to chronic inflammatory and lung tissue damage in COPD.
A field study to evaluate PMI estimation methods for advanced decomposition stages
Estimating the postmortem interval (PMI) is one of the major tasks and a continuous challenge in forensic pathology. It is often an exclusion process of available methods, which ultimately can lead to an unsatisfactory outcome due to poor reliability. This problem is most acute in the late PMI, when decomposition proceeds and some methods (such as rigor, livor, and algor mortis) are no longer applicable. Several methods, such as forensic entomology, skeletal muscle protein degradation, and the study of body decomposition by application of a morphological scoring, are expected to provide further information; however, all have certain limitations and weaknesses. Availability of a tool-box of methods allows a case-specific selection of the most appropriate one(s), or eventually provides improvements in the overall accuracy and precision of the PMI estimation by merging and combining methods. To investigate practical (field) application, eventual interferences, and/or synergetic effects, as well as the robustness of these methods towards specific influencing factors, a field study was conducted, using eight pig cadavers of different body weights and physical coverage, left to decompose under natural conditions for 16 days. Morphological changes during decomposition were assessed using the total body score (TBS), muscle samples were collected to analyze protein degradation, and insect colonization was evaluated. The results reveal strengths and current limitations of all tested methods, as well as promising synergistic effects, and thus, provide a baseline for targeted future research.