Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
153 result(s) for "Stevanovic, Zoran"
Sort by:
Karst waters in potable water supply: a global scale overview
Karst aquifers are one of the main potable water sources worldwide. Although the exact global karst water utilisation figures cannot be provided, this study represents an attempt to make an upgraded assessment of earlier and often circulated data. The main objective of the undertaken analysis is not only to provide an assessment of the utilisation of current karst aquifers, but also to estimate possible trends under various impact factors such as population growth or climate changes. In > 140 countries, different types of karstified rocks crop out over some 19.3 × 106 km2, covering > 14% of ice-free land. The main ‘karst countries’, those with > 1 × 106 km2 of karst surface are Russia, USA, China and Canada, while among those with > 80% of the territories covered by karst are Jamaica, Cuba, Montenegro and several others. In contrast, in a quarter of the total number of countries, karstic rocks are either totally absent or have a minor extension, meaning that no karst water sources can be developed. Although the precise number of total karst water consumers cannot be defined, it was assessed in 2016 at approximately 678 million or 9.2% of the world’s population, which is twice less than what was previously estimated in some of the reports. With a total estimated withdrawal of 127 km3/year, karst aquifers are contributing to the total global groundwater withdrawal by about 13%. However, only around 4% of the estimated average global annually renewable karstic groundwater is currently utilised, of which < 1% is for drinking purposes. Although often problematic because of unstable discharge regimes and high vulnerability to pollution, karst groundwater represents the main source of potable water supply in many countries and regions. Nevertheless, engineering solutions are often required to ensure a sustainable water supply and prevent negative consequences of groundwater over-extraction.
Global distribution of carbonate rocks and karst water resources
Karst regions offer a variety of natural resources such as freshwater and biodiversity, and many cultural resources. The World Karst Aquifer Map (WOKAM) is the first detailed and complete global geodatabase concerning the distribution of karstifiable rocks (carbonates and evaporites) representing potential karst aquifers. This study presents a statistical evaluation of WOKAM, focusing entirely on karst in carbonate rocks and addressing four main aspects: (1) global occurrence and geographic distribution of karst; (2) karst in various topographic settings and coastal areas; (3) karst in different climatic zones; and (4) populations living on karst. According to the analysis, 15.2% of the global ice-free continental surface is characterized by the presence of karstifiable carbonate rock. The largest percentage is in Europe (21.8%); the largest absolute area occurs in Asia (8.35 million km2). Globally, 31.1% of all surface exposures of carbonate rocks occur in plains, 28.1% in hills and 40.8% in mountains, and 151,400 km or 15.7% of marine coastlines are characterized by carbonate rocks. About 34.2% of all carbonate rocks occur in arid climates, followed by 28.2% in cold and 15.9% in temperate climates, whereas only 13.1 and 8.6% occur in tropical and polar climates, respectively. Globally, 1.18 billion people (16.5% of the global population) live on karst. The highest absolute number occurs in Asia (661.7 million), whereas the highest percentages are in Europe (25.3%) and North America (23.5%). These results demonstrate the global importance of karst and serve as a basis for further research and international water management strategies.
Global karst springs hydrograph dataset for research and management of the world’s fastest-flowing groundwater
Karst aquifers provide drinking water for 10% of the world’s population, support agriculture, groundwater-dependent activities, and ecosystems. These aquifers are characterised by complex groundwater-flow systems, hence, they are extremely vulnerable and protecting them requires an in-depth understanding of the systems. Poor data accessibility has limited advances in karst research and realistic representation of karst processes in large-scale hydrological studies. In this study, we present World Karst Spring hydrograph (WoKaS) database, a community-wide effort to improve data accessibility. WoKaS is the first global karst springs discharge database with over 400 spring observations collected from articles, hydrological databases and researchers. The dataset’s coverage compares to the global distribution of carbonate rocks with some bias towards the latitudes of more developed countries. WoKaS database will ensure easy access to a large-sample of good quality datasets suitable for a wide range of applications: comparative studies, trend analysis and model evaluation. This database will largely contribute to research advancement in karst hydrology, supports karst groundwater management, and promotes international and interdisciplinary collaborations.Measurement(s)hydrographic feature • fluid flow rateTechnology Type(s)digital curationFactor Type(s)geographic location • yearSample Characteristic - Environmentkarst • spring • groundwaterMachine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11336507
Electrorefining Process of the Non-Commercial Copper Anodes
The electrorefining process of the non-commercial Cu anodes was tested on the enlarged laboratory equipment over 72 h. Cu anodes with Ni content of 5 or 10 wt.% and total content of Pb, Sn, and Sb of about 1.5 wt.% were used for the tests. The real waste solution of sulfuric acid character was a working electrolyte of different temperatures (T1 = 63 ± 2 °C and T2 = 73 ± 2 °C). The current density of 250 A/m2 was the same as in the commercial process. Tests were confirmed that those anodes can be used in the commercial copper electrorefining process based on the fact that the elements from anodes were dissolved, the total anode passivation did not occur, and copper is deposited onto cathodes. The masses of cathode deposits confirmed that the Cu ions from the electrolyte were also deposited onto cathodes. The concentration of Cu, As, and Sb ions in the electrolyte was decreased. At the same time, the concentration of Ni ions was increased by a maximum of up to 129.27 wt.%. The major crystalline phases in the obtained anode slime, detected by the X-ray diffraction analyses, were PbSO4, Cu3As, SbAsO4, Cu2O, As2O3, PbO, SnO, and Sb2O3.
The World Karst Aquifer Mapping project: concept, mapping procedure and map of Europe
Karst aquifers contribute substantially to freshwater supplies in many regions of the world, but are vulnerable to contamination and difficult to manage because of their unique hydrogeological characteristics. Many karst systems are hydraulically connected over wide areas and require transboundary exploration, protection and management. In order to obtain a better global overview of karst aquifers, to create a basis for sustainable international water-resources management, and to increase the awareness in the public and among decision makers, the World Karst Aquifer Mapping (WOKAM) project was established. The goal is to create a world map and database of karst aquifers, as a further development of earlier maps. This paper presents the basic concepts and the detailed mapping procedure, using France as an example to illustrate the step-by-step workflow, which includes generalization, differentiation of continuous and discontinuous carbonate and evaporite rock areas, and the identification of non-exposed karst aquifers. The map also shows selected caves and karst springs, which are collected in an associated global database. The draft karst aquifer map of Europe shows that 21.6% of the European land surface is characterized by the presence of (continuous or discontinuous) carbonate rocks; about 13.8% of the land surface is carbonate rock outcrop.
New Approach of Metals Removal from Acid Mine Drainage
The possibility of metal removal from the real acid mine drainage (AMD) in the area of copper ore mines in the southeast Serbia, was investigated through a combination of neutralization and adsorption methods. This approach of metal removal from AMD includes a two-step neutralization method in the first phase, aiming to separate metals as sludge. The results of laboratory test revealed that more than 99 mass % of Fe is removed up to pH 4 and more than 99 mass % of Cu up to pH 7. Based on the results obtained in laboratory conditions, a test on a semi industrial plant was carried out. The two-step neutralization separately removed Fe and Cu at pH 4 and 7, respectively. Especially, the obtained sludge at pH 7 included 1.24 mass % of Cu, much higher than usual Cu ore. Chitosan was applied for dissolved Mn removal from treated AMD. After 24 h incubation, 70 mass % of Mn is removed from the treated AMD at pH 7.4. Mn concentration was reduced from approx. 35 mg L−1 to 5 mg L−1. These results have indicated that a combination of neutralization and adsorption methods could be used effectively for metal removal from real AMD.
Damming underground flow to enhance recharge of karst aquifers in the arid and semi-arid worlds
Subsurface dams could be an optimal solution for storing floods or waters of temporary streams in countries with arid and semi-arid climatic conditions. Many such structures are already completed in the northern and eastern African countries and Middle East, but many other prosperous locations require feasibility assessment and construction if found appropriate. Two types of dams are common: one built in the karst (for direct recharge), and the other into the karst connected alluvial aquifer (for indirect recharge). The former is very rare due to its complicated construction and threat of water leakage. The latter has more often, but not always been applied with the aim to improve storage in karst, but as an indirect effect of damming of the flow in adjacent alluviums. This article discusses some positive experiences with dams built in northern Iraq, Algeria, Ethiopia and Somalia and advantages of the application of such subsurface structures in several potential locations in countries with a prevailing arid and semi-arid climate, but it also explores uncertainties which end-users may face if the engineering design is not prepared based on results of a proper research programme.
South-eastern Dinaric karst: contrasts in water treasury
South-eastern Dinarides comprise territories of four countries of SE Europe—Croatia, Bosnia and Herzegovina, Montenegro and Albania and their parts belonging to the Adriatic basin. The region consists mainly of highly karstified carbonate rocks and is characterised by a high precipitation rate. As a result, karst aquifers can accumulate large amounts of groundwater issuing at numerous karst springs, some being the world’s largest in terms of maximal flow. Locally, the annual total rainfall rate sometimes reaches 5000 mm or even more, while an average specific groundwater yield of examined karst aquifers ranges from 40 to 50 l/s/km2. However, as discussed in this paper, the region also has many contrasts: abundant water reserves yet water shortage in certain parts, natural phenomena and wonders yet limited sources of life, good natural water quality marred by its vulnerability to pollution, feasible engineering solutions accompanied by their partly negative impact on environment, and water management at the national level contrasting with the transboundary character of most large aquifers. Doubts whether waters from this “treasury” are utilised in the best way and what the prospects are for their sustainable use and protection in the future are also analysed in the text.
Anticipating and managing engineering problems in the complex karst environment
Karst environments are characterized by distinctive landforms and a peculiar hydrologic behavior dominated by subsurface drainage. Karst systems can be extremely complex, heterogeneous, and unpredictable due to the wide range of geological and hydrological controlling factors. The great variability results in serious problems for engineers, and in difficulties to characterize the karstified rock masses, and in designing the engineering works to be performed. The design and development of engineering projects in karst environments require specific approaches aimed at minimizing the detrimental effects of hazardous processes and environmental problems. Further, karst aquifers (that provide approximately 20–25 % of the world’s drinking water) are extremely vulnerable to pollution, due to the direct connection between the surface and the subsurface drainage, the rapidity of the water flow in conduit networks, and the very low depuration capability. Sinkholes are the main source of engineering problems in karst environments, and may cause severe damage in any human structure. The strategies and solutions that may be applied to mitigate sinkhole problems are highly variable and largely depend on the kind of engineering structure, the karst setting, and the typology and size of the sinkholes. A sound geological model, properly considering the peculiarities of karst and its interactions with the human environment, is essential for the design of cost-effective and successful risk reduction programs. Due to the unique direct interaction between surface and subsurface environments, and the frequent ground instability problems related to underground karstification, management of karst environments is a very delicate matter. Disregarding such circumstances in land-use planning and development inevitably results in severe problems with high economic impacts. Karst environments require specific investigation methods in order to properly manage and safeguard the sensitive geo-ecosystems and natural resources associated with them.
Copper Recovery and Reduction of Environmental Loading from Mine Tailings by High-Pressure Leaching and SX-EW Process
The flotation tailings obtained from Bor Copper Mine contain pyrite (FeS2) and chalcopyrite (CuFeS2), these sulfide minerals are known to promote acid mine drainage (AMD) which poses a serious threat to the environment and human health. This study focuses on the treatment of mine tailings to convert the AMD supporting minerals to more stable forms, while simultaneously valorizing the mine tailings. A combination of hydrometallurgical processes of high-pressure oxidative leaching (HPOL), solvent extraction (SX), and electrowinning (EW) were utilized to recover copper from mine tailings which contain about 0.3% Cu content. The HPOL process yielded a high copper leaching rate of 94.4% when water was used as a leaching medium. The copper leaching kinetics were promoted by the generation of sulfuric acid due to pyrite oxidation. It was also confirmed that a low iron concentration (1.4 g/L) and a high copper concentration (44.8 g/L) obtained in the stripped solution resulted in an improved copper electrodeposition current efficiency during copper electrowinning. Moreover, pyrite, which is primarily in the mine tailings, was converted into hematite after HPOL. A stability evaluation of the solid residue confirmed almost no elution of metal ions, confirming the reduced environmental loading of mine tailings through re-processing.