Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,623
result(s) for
"Stevenson, David A."
Sort by:
Expanding the clinical and molecular findings in RASA1 capillary malformation-arteriovenous malformation
2018
RASA1-related disorders are vascular malformation syndromes characterized by hereditary capillary malformations (CM) with or without arteriovenous malformations (AVM), arteriovenous fistulas (AVF), or Parkes Weber syndrome. The number of cases reported is relatively small; and while the main clinical features are CMs and AVMs/AVFs, the broader phenotypic spectrum caused by variants in the RASA1 gene is still being defined. Here, we report the clinical and molecular findings in 69 unrelated cases with a RASA1 variant identified at ARUP Laboratories. Sanger sequencing and multiplex ligation-dependent probe amplification were primarily used to evaluate RASA1. Several atypical cases were evaluated using next-generation sequencing (NGS) and array-comparative genomic hybridization (aCGH). Sixty individuals had a deleterious RASA1 variant of which 29 were novel. Nine individuals had a variant of uncertain significance. Five large RASA1 deletions were detected, giving an overall deletion/duplication rate of 8.3% (5/60) among positive cases. Most (75.4%) individuals with a RASA1 variant had CMs, and 44.9% had an AVM/AVF. Clinical findings in several cases expand the RASA1 phenotype. Our data suggest that screening for large RASA1 deletions and duplications in this disorder is important and suggest that NGS multi-gene panel testing is beneficial for the molecular diagnosis of cases with complex vascular phenotypes.
Journal Article
Genetic Variants Associated with Port-Wine Stains
by
Bayrak-Toydemir, Pinar
,
Margraf, Rebecca
,
Wooderchak-Donahue, Whitney
in
Adolescent
,
Adult
,
Alleles
2015
Port-wine stains (PWS) are capillary malformations, typically located in the dermis of the head and neck, affecting 0.3% of the population. Current theories suggest that port-wine stains are caused by somatic mutations that disrupt vascular development.
Understanding PWS genetic determinants could provide insight into new treatments.
Our study used a custom next generation sequencing (NGS) panel and digital polymerase chain reaction to investigate genetic variants in 12 individuals with isolated port-wine stains. Importantly, affected and healthy skin tissue from the same individual were compared. A subtractive correction method was developed to eliminate background noise from NGS data. This allowed the detection of a very low level of mosaicism.
A novel somatic variant GNAQ, c.547C>G, p.Arg183Gly was found in one case with 4% allele frequency. The previously reported GNAQ c.548G>A, p.Arg183Gln was confirmed in 9 of 12 cases with an allele frequency ranging from 1.73 to 7.42%. Digital polymerase chain reaction confirmed novel variants detected by next generation sequencing. Two novel somatic variants were also found in RASA1, although neither was predicted to be deleterious.
This is the second largest study on isolated, non-syndromic PWS. Our data suggest that GNAQ is the main genetic determinant in this condition. Moreover, isolated port-wine stains are distinct from capillary malformations seen in RASA1 disorders, which will be helpful in clinical evaluation.
Journal Article
Maternal uniparental disomy of chromosome 20: a novel imprinting disorder of growth failure
by
Elbracht, Miriam
,
Turner, Claire L.S.
,
Jenny, Kim
in
631/208/1516
,
692/420/2489/1381/2036
,
692/699/2743/1530
2016
Maternal uniparental disomy of chromosome 20 (UPD(20)mat) has been reported in only four patients, three of whom also had mosaicism for complete or partial trisomy of chromosome 20. We sought to evaluate the clinical significance of isolated UPD(20)mat in eight individuals.
We evaluated phenotypic and genomic findings of a series of eight new patients with UPD(20)mat.
All eight individuals with UPD(20)mat had intrauterine growth restriction, short stature, and prominent feeding difficulties with failure to thrive. As a common feature, they often required gastric tube feeds. Genomic data in most patients are indicative of UPD as a result of trisomy rescue after meiosis II nondisjunction.
We describe the first natural history of the disorder and the results of therapeutic interventions, including the frequent requirement of direct gastric feedings only during the first few years of life, and propose that growth hormone supplementation is probably safe and effective for this condition. We suggest that UPD(20)mat can be regarded as a new imprinting disorder and its identification requires specialized molecular testing, which should be performed in patients with early-onset idiopathic isolated growth failure.
Journal Article
Osteogenesis imperfecta type XVII: expansion of the phenotype
by
Harrington, Caitlin
,
Dunleavy, Brooke M
,
Schildt, Alison J
in
Cognition & reasoning
,
Collagen
,
Disodium pamidronate
2024
Biallelic variants in SPARC are extremely rare, and have been reported in only a few cases of autosomal recessive osteogenesis imperfecta (OI) type XVII. Here, we describe an individual with a SPARC homozygous missense variant (c.787G > A; p.Glu263Lys) and expand on the phenotype. Overall, the proband supports the current phenotype of SPARC-related OI, but also expands the phenotypic variability.
Journal Article
Dystrophic Spinal Deformities in a Neurofibromatosis Type 1 Murine Model
2015
Despite the high prevalence and significant morbidity of spinal anomalies in neurofibromatosis type 1 (NF1), the pathogenesis of these defects remains largely unknown. Here, we present two murine models: Nf1flox/-;PeriCre and Nf1flox/-;Col.2.3Cre mice, which recapitulate spinal deformities seen in the human disease. Dynamic histomorphometry and microtomographic studies show recalcitrant bone remodeling and distorted bone microarchitecture within the vertebral spine of Nf1flox/-;PeriCre and Nf1flox/-;Col2.3Cre mice, with analogous histological features present in a human patient with dystrophic scoliosis. Intriguingly, 36-60% of Nf1flox/-;PeriCre and Nf1flox/-;Col2.3Cre mice exhibit segmental vertebral fusion anomalies with boney obliteration of the intervertebral disc (IVD). While analogous findings have not yet been reported in the NF1 patient population, we herein present two case reports of IVD defects and interarticular vertebral fusion in patients with NF1. Collectively, these data provide novel insights regarding the pathophysiology of dystrophic spinal anomalies in NF1, and provide impetus for future radiographic analyses of larger patient cohorts to determine whether IVD and vertebral fusion defects may have been previously overlooked or underreported in the NF1 patient population.
Journal Article
The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer
by
Andresen, Brage S.
,
Larsen, Martin R.
,
Swensen, Jeff
in
Biology and Life Sciences
,
Cancer
,
Charitable foundations
2016
Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping.
Journal Article
Care of adults with neurofibromatosis type 1: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG)
by
Nathanson, Katherine L.
,
Stevenson, David A.
,
Stewart, Douglas R.
in
ACMG Practice Guidelines
,
Biomedical and Life Sciences
,
Biomedicine
2018
This practice resource is designed primarily as an educational resource for medical geneticists and other clinicians to help them provide quality medical services. Adherence to this practice resource is completely voluntary and does not necessarily assure a successful medical outcome. This practice resource should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinician should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen.
Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in conformance with this practice resource. Clinicians also are advised to take notice of the date this practice resource was adopted, and to consider other medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder that is caused by a heterozygous loss-of-function variant in the tumor suppressor gene NF1; it affects ~1/1,900–1/3,500 people worldwide. The disorder is associated with an 8–15-year reduction in average life expectancy in both men and women, primarily due to malignant neoplasms and cardiovascular causes.
A work group of experts sought to determine the prevalence, morbidity and mortality, and available treatments of common and emerging NF1-related clinical problems in adults. Work-group members identified peer-reviewed publications from PubMed. Publications derived from populations and multi-institution cohorts were prioritized. Recommendations for management arose by consensus from this literature and the collective expertise of the authors.
Malignant peripheral nerve sheath tumor (MPNST), breast cancer, cutaneous neurofibromas, and significant psychiatric and neurologic diagnoses are common problems in patients with NF1.
Patient education and sensitization to worrisome signs and symptoms such as progressive severe pain (MPNST), changes in tumor volume (MPNST), new, unexplained neurologic symptoms (MPNST, brain tumors), and diaphoresis/palpitations (pheochromocytoma) are important. Although many issues in adults with NF1 can be managed by an internist or family physician, we strongly encourage evaluation by, and care coordination with, a specialized NF1 clinic.
Journal Article
Missense variants in CTNNB1 can be associated with vitreoretinopathy—Seven new cases of CTNNB1‐associated neurodevelopmental disorder including a previously unreported retinal phenotype
by
Walker, Melissa A.
,
Bekheirnia, Mir Reza
,
Knapo, Julia
in
Abnormalities
,
Anomalies
,
Astigmatism
2021
Background CTNNB1 (MIM 116806) encodes beta‐catenin, an adherens junction protein that supports the integrity between layers of epithelial tissue and mediates intercellular signaling. Recently, various heterozygous germline variants in CTNNB1 have been associated with human disease, including neurodevelopmental disorder with spastic diplegia and visual defects (MIM 615075) as well as isolated familial exudative vitreoretinopathy without developmental delays or other organ system involvement (MIM 617572). From over 40 previously reported patients with CTNNB1‐related neurodevelopmental disorder, many have had ocular anomalies including strabismus, hyperopia, and astigmatism. More recently, multiple reports indicate that these abnormalities are associated with the presence of vitreoretinopathy. Methods We gathered a cohort of three patients with CTNNB1‐related neurodevelopmental disorder, recruited from both our own clinic and referred from outside providers. We then searched for a clinical database comprised of over 12,000 exome sequencing studies to identify and recruit four additional patients. Results Here, we report seven new cases of CTNNB1‐related neurodevelopmental disorder, all harboring de novo variants, six of which were previously unreported. All patients but one presented with a spectrum of ocular abnormalities and one patient, who was found to carry a missense variant in CTNNB1, had notable vitreoretinopathy. Conclusions Our findings suggest ophthalmologic screening should be performed in all patients with CTNNB1 variants. Here, we report seven new cases of CTNNB1‐related neurodevelopmental disorder, all harboring de novo variants, six of which were previously unreported. All patients but one presented with a spectrum of ocular abnormalities and one patient, who was found to carry a missense variant in CTNNB1, had notable vitreoretinopathy. Our findings suggest that ophthalmologic screening should be performed in all patients with CTNNB1 variants.
Journal Article
Multiscale, Converging Defects of Macro-Porosity, Microstructure and Matrix Mineralization Impact Long Bone Fragility in NF1
by
Grohmann, Julia
,
Kühnisch, Jirko
,
Duda, Georg
in
Acoustic microscopes
,
Acoustic microscopy
,
Analysis
2014
Bone fragility due to osteopenia, osteoporosis or debilitating focal skeletal dysplasias is a frequent observation in the Mendelian disease Neurofibromatosis type 1 (NF1). To determine the mechanisms underlying bone fragility in NF1 we analyzed two conditional mouse models, Nf1Prx1 (limb knock-out) and Nf1Col1 (osteoblast specific knock-out), as well as cortical bone samples from individuals with NF1. We examined mouse bone tissue with micro-computed tomography, qualitative and quantitative histology, mechanical tensile analysis, small-angle X-ray scattering (SAXS), energy dispersive X-ray spectroscopy (EDX), and scanning acoustic microscopy (SAM). In cortical bone of Nf1Prx1 mice we detected ectopic blood vessels that were associated with diaphyseal mineralization defects. Defective mineral binding in the proximity of blood vessels was most likely due to impaired bone collagen formation, as these areas were completely devoid of acidic matrix proteins and contained thin collagen fibers. Additionally, we found significantly reduced mechanical strength of the bone material, which was partially caused by increased osteocyte volume. Consistent with these observations, bone samples from individuals with NF1 and tibial dysplasia showed increased osteocyte lacuna volume. Reduced mechanical properties were associated with diminished matrix stiffness, as determined by SAM. In line with these observations, bone tissue from individuals with NF1 and tibial dysplasia showed heterogeneous mineralization and reduced collagen fiber thickness and packaging. Collectively, the data indicate that bone fragility in NF1 tibial dysplasia is partly due to an increased osteocyte-related micro-porosity, hypomineralization, a generalized defect of organic matrix formation, exacerbated in the regions of tensional and bending force integration, and finally persistence of ectopic blood vessels associated with localized macro-porotic bone lesions.
Journal Article
Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia
2015
Piezo1 ion channels are mediators of mechanotransduction in several cell types including the vascular endothelium, renal tubular cells and erythrocytes. Gain-of-function mutations in
PIEZO1
cause an autosomal dominant haemolytic anaemia in humans called dehydrated hereditary stomatocytosis. However, the phenotypic consequence of
PIEZO1
loss of function in humans has not previously been documented. Here we discover a novel role of this channel in the lymphatic system. Through whole-exome sequencing, we identify biallelic mutations in
PIEZO1
(a splicing variant leading to early truncation and a non-synonymous missense variant) in a pair of siblings affected with persistent lymphoedema caused by congenital lymphatic dysplasia. Analysis of patients’ erythrocytes as well as studies in a heterologous system reveal greatly attenuated PIEZO1 function in affected alleles. Our results delineate a novel clinical category of PIEZO1-associated hereditary lymphoedema.
Lukacs
et al.
identify mutations in the
PIEZO1
gene in patients with congenital lymphatic dysplasia. The study also characterizes the functional consequence of the disease-associated Piezo1 mutant proteins and show attenuated ion channel function in cellular context.
Journal Article