Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
4,892 result(s) for "Stevenson, R"
Sort by:
Spin-photon entanglement with direct photon emission in the telecom C-band
Quantum networks, relying on the distribution of quantum entanglement between remote locations, have the potential to transform quantum computation and secure long-distance quantum communication. However, a fundamental ingredient for fibre-based implementations of such networks, namely entanglement between a single spin and a photon directly emitted at telecom wavelengths, has been unattainable so far. Here, we use a negatively charged exciton in an InAs/InP quantum dot to implement an optically active spin qubit taking advantage of the lowest-loss transmission window, the telecom C-band. We investigate the coherent interactions of the spin-qubit system under resonant excitation, demonstrating high fidelity spin initialisation and coherent control using picosecond pulses. We further use these tools to measure the coherence of a single, undisturbed electron spin in our system. Finally, we demonstrate spin-photon entanglement in a solid-state system with entanglement fidelity F  = 80.07 ± 2.9%, more than 10 standard deviations above the classical limit. Quantum communication networks would greatly benefit from the possibility to have solid-state emitters being directly interfaced with telecom fibers, without the need for wavelength conversion. Here, the authors demonstrate coherent control of an InAs/InP quantum dot, as well as entanglement between its electron spin and the frequency of a telecom photon.
Coherent light scattering from a telecom C-band quantum dot
Quantum networks have the potential to transform secure communication via quantum key distribution and enable novel concepts in distributed quantum computing and sensing. Coherent quantum light generation at telecom wavelengths is fundamental for fibre-based network implementations, but Fourier-limited emission and subnatural linewidth photons have so far only been reported from systems operating in the visible to near-infrared wavelength range. Here, we use InAs/InP quantum dots to demonstrate photons with coherence times much longer than the Fourier limit at telecom wavelength via elastic scattering of excitation laser photons. Further, we show that even the inelastically scattered photons have coherence times within the error bars of the Fourier limit. Finally, we make direct use of the minimal attenuation in fibre for these photons by measuring two-photon interference after 25 km of fibre, demonstrating finite interference visibility for photons emitted about 100,000 excitation cycles apart. Developing quantum networks would require reliable sources of coherent quantum light at telecom wavelengths. Here, the authors employ elastic scattering of excitation laser photons on InAs/InP quantum dots to demonstrate the emission of telecom photons with coherence times longer than the Fourier limit.
A semiconductor source of triggered entangled photon pairs
Entangled photon pairs are an important resource in quantum optics 1 , and are essential for quantum information 2 applications such as quantum key distribution 3 , 4 and controlled quantum logic operations 5 . The radiative decay of biexcitons—that is, states consisting of two bound electron–hole pairs—in a quantum dot has been proposed as a source of triggered polarization-entangled photon pairs 6 . To date, however, experiments have indicated that a splitting of the intermediate exciton energy yields only classically correlated emission 7 , 8 , 9 . Here we demonstrate triggered photon pair emission from single quantum dots suggestive of polarization entanglement. We achieve this by tuning the splitting to zero, through either application of an in-plane magnetic field or careful control of growth conditions. Entangled photon pairs generated ‘on demand’ have significant fundamental advantages over other schemes 10 , 11 , 12 , 13 , which can suffer from multiple pair emission, or require post-selection techniques or the use of photon-number discriminating detectors. Furthermore, control over the pair generation time is essential for scaling many quantum information schemes beyond a few gates. Our results suggest that a triggered entangled photon pair source could be implemented by a simple semiconductor light-emitting diode 14 .
Effect of phosphorus stress on Microcystis aeruginosa growth and phosphorus uptake
This study was designed to advance understanding of phosphorus regulation of Microcystis aeruginosa growth, phosphorus uptake and storage in changing phosphorus (P) conditions as would occur in lakes. We hypothesized that Microcystis growth and nutrient uptake would fit classic models by Monod, Droop, and Michaelis-Menten in these changing conditions. Microcystis grown in luxury nutrient concentrations was transferred to treatments with phosphorus concentrations ranging from 0-256 μg P∙L-1 and luxury nitrogen. Dissolved phosphorus concentration, cell phosphorus quota, P uptake rate and cell densities were measured at day 3 and 6. Results showed little relationship to predicted models. Microcystis growth was asymptotically related to P treatment from day 0-3, fitting Monod model well, but negatively related to P treatment and cell quota from day 3-6. From day 0-3, cell quota was negatively related to P treatments at <2 μg∙L-1, but increased slightly at higher P. Cell quota decreased greatly in low P treatments from day 3-6, which may have enabled high growths in low P treatments. P uptake was positively and linearly related to P treatment during both periods. Negative uptake rates and increases in measured culture phosphorus concentrations to 5 μg∙L-1 in the lowest P treatments indicated P leaked from cells into culture medium. This leakage during early stages of the experiment may have been sufficient to stimulate metabolism and use of intracellular P stores in low P treatments for rapid growth. Our study shows P regulation of Microcystis growth can be complex as a result of changing P concentrations, and this complexity may be important for modeling Microcystis for nutrient and ecosystem management.
Convergent Validity of Behavioural and Subjective Sensitivity in Relation to Autistic Traits
Sensory issues are highly prevalent in autism and previous findings support a relationship between questionnaires of sensitivity and autistic symptoms and traits, whereas studies that examine this relationship through behavioural assessments of sensitivity are less consistent. The current study explores these differences and suggests that behavioural thresholds for sensitivity and subjective sensitivity are distinct constructs. One hundred and eighteen adults completed a visual and auditory detection task and questionnaires on sensory processing and autistic traits. Visual thresholds and subjective visual sensitivity were not correlated, but both were related to autistic traits. Auditory thresholds and subjective auditory sensitivity were also unrelated. Overall, sensitivity is highly associated with autistic traits, however, behavioural and questionnaire assessments lack convergent validity and therefore, likely assess distinct constructs.
Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production
New estimates of the impacts of germplasm improvement in the major staple crops between 1965 and 2004 on global land-cover change are presented, based on simulations carried out using a global economic model (Global Trade Analysis Project Agro-Ecological Zone), a multicommodity, multiregional computable general equilibrium model linked to a global spatially explicit database on land use. We estimate the impact of removing the gains in cereal productivity attributed to the widespread adoption of improved varieties in developing countries. Here, several different effects—higher yields, lower prices, higher land rents, and trade effects—have been incorporated in a single model of the impact of Green Revolution research (and subsequent advances in yields from crop germplasm improvement) on land-cover change. Our results generally support the Borlaug hypothesis that increases in cereal yields as a result of widespread adoption of improved crop germplasm have saved natural ecosystems from being converted to agriculture. However, this relationship is complex, and the net effect is of a much smaller magnitude than Borlaug proposed. We estimate that the total crop area in 2004 would have been between 17.9 and 26.7 million hectares larger in a world that had not benefited from crop germplasm improvement since 1965. Of these hectares, 12.0-17.7 million would have been in developing countries, displacing pastures and resulting in an estimated 2 million hectares of additional deforestation. However, the negative impacts of higher food prices on poverty and hunger under this scenario would likely have dwarfed the welfare effects of agricultural expansion.
Thermophilization of adult and juvenile tree communities in the northern tropical Andes
Climate change is expected to cause shifts in the composition of tropical montane forests towards increased relative abundances of species whose ranges were previously centered at lower, hotter elevations. To investigate this process of “thermophilization,” we analyzed patterns of compositional change over the last decade using recensus data from a network of 16 adult and juvenile tree plots in the tropical forests of northern Andes Mountains and adjacent lowlands in northwestern Colombia. Analyses show evidence that tree species composition is strongly linked to temperature and that composition is changing directionally through time, potentially in response to climate change and increasing temperatures. Mean rates of thermophilization [thermal migration rate (TMR), °C·y⁻¹] across all censuses were 0.011 °C·y⁻¹ (95% confidence interval = 0.002– 0.022 °C·y⁻¹) for adult trees and 0.027 °C·y⁻¹ (95% confidence interval = 0.009–0.050 °C·y⁻¹) for juvenile trees. The fact that thermophilization is occurring in both the adult and juvenile trees and at rates consistent with concurrent warming supports the hypothesis that the observed compositional changes are part of a long-term process, such as global warming, and are not a response to any single episodic event. The observed changes in composition were driven primarily by patterns of tree mortality, indicating that the changes in composition are mostly via range retractions, rather than range shifts or expansions. These results all indicate that tropical forests are being strongly affected by climate change and suggest that many species will be at elevated risk for extinction as warming continues.