Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6
result(s) for
"Stewart, Afrancis"
Sort by:
A conditional knockout resource for the genome-wide study of mouse gene function
by
Bushell, Wendy
,
Biggs, Patrick
,
Skarnes, William C.
in
631/114
,
631/1647/1513/1967
,
631/208/191/1908
2011
Gene targeting in embryonic stem cells has become the principal technology for manipulation of the mouse genome, offering unrivalled accuracy in allele design and access to conditional mutagenesis. To bring these advantages to the wider research community, large-scale mouse knockout programmes are producing a permanent resource of targeted mutations in all protein-coding genes. Here we report the establishment of a high-throughput gene-targeting pipeline for the generation of reporter-tagged, conditional alleles. Computational allele design, 96-well modular vector construction and high-efficiency gene-targeting strategies have been combined to mutate genes on an unprecedented scale. So far, more than 12,000 vectors and 9,000 conditional targeted alleles have been produced in highly germline-competent C57BL/6N embryonic stem cells. High-throughput genome engineering highlighted by this study is broadly applicable to rat and human stem cells and provides a foundation for future genome-wide efforts aimed at deciphering the function of all genes encoded by the mammalian genome.
Knockout mice with potential
Knockout mice in which a specific gene is inactivated are central to the analysis of gene function. An important resource is reported here in the form of a high-throughput gene targeting pipeline that has already produced thousands of conditional mutations in the C57BL/6 embryonic stem-cell line, suitable for the creation of mutant mice for large-scale phenotyping programmes. The strategy is also applicable to rat and human stem cells and provides a foundation for deciphering the function of all genes encoded by the mammalian genome.
Journal Article
Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1
by
Daniel, Katrin
,
Roig, Ignasi
,
Cooke, Howard J.
in
631/136/2434/1706
,
631/337/1427/2122
,
631/337/641/2187
2011
Meiotic crossover formation between homologous chromosomes (homologues) entails DNA double-strand break (DSB) formation, homology search using DSB ends, and synaptonemal-complex formation coupled with DSB repair. Meiotic progression must be prevented until DSB repair and homologue alignment are completed, to avoid the formation of aneuploid gametes. Here we show that mouse HORMAD1 ensures that sufficient numbers of processed DSBs are available for successful homology search. HORMAD1 is needed for normal synaptonemal-complex formation and for the efficient recruitment of ATR checkpoint kinase activity to unsynapsed chromatin. The latter phenomenon was proposed to be important in meiotic prophase checkpoints in both sexes. Consistent with this hypothesis, HORMAD1 is essential for the elimination of synaptonemal-complex-defective oocytes. Synaptonemal-complex formation results in HORMAD1 depletion from chromosome axes. Thus, we propose that the synaptonemal complex and HORMAD1 are key components of a negative feedback loop that coordinates meiotic progression with homologue alignment: HORMAD1 promotes homologue alignment and synaptonemal-complex formation, and synaptonemal complexes downregulate HORMAD1 function, thereby permitting progression past meiotic prophase checkpoints.
In meiosis, HORMAD1 promotes alignment of homologues chromosomes and formation of the synaptonemal complex and is required for efficient accumulation of checkpoint and repair proteins on unsynapsed DNA.
Journal Article
MLL2 Is Required in Oocytes for Bulk Histone 3 Lysine 4 Trimethylation and Transcriptional Silencing
by
Chen, Ruihong
,
Agno, Julio E.
,
Matzuk, Martin M.
in
Animals
,
Apoptosis
,
Cyclin-dependent kinases
2010
During gametogenesis and pre-implantation development, the mammalian epigenome is reprogrammed to establish pluripotency in the epiblast. Here we show that the histone 3 lysine 4 (H3K4) methyltransferase, MLL2, controls most of the promoter-specific chromatin modification, H3K4me3, during oogenesis and early development. Using conditional knockout mutagenesis and a hypomorph model, we show that Mll2 deficiency in oocytes results in anovulation and oocyte death, with increased transcription of p53, apoptotic factors, and Iap elements. MLL2 is required for (1) bulk H3K4me3 but not H3K4me1, indicating that MLL2 controls most promoters but monomethylation is regulated by a different H3K4 methyltransferase; (2) the global transcriptional silencing that preceeds resumption of meiosis but not for the concomitant nuclear reorganization into the surrounded nucleolus (SN) chromatin configuration; (3) oocyte survival; and (4) normal zygotic genome activation. These results reveal that MLL2 is autonomously required in oocytes for fertility and imply that MLL2 contributes to the epigenetic reprogramming that takes place before fertilization. We propose that once this task has been accomplished, MLL2 is not required until gastrulation and that other methyltransferases are responsible for bulk H3K4me3, thereby revealing an unexpected epigenetic control switch amongst the H3K4 methyltransferases during development.
Journal Article
Single-stranded heteroduplex intermediates in λ Red homologous recombination
by
Stewart, Afrancis
,
Zhang, Youming
,
Maresca, Marcello
in
Bacteriophage lambda - genetics
,
Biochemistry
,
Biomedical and Life Sciences
2010
Background
The Red proteins of lambda phage mediate probably the simplest and most efficient homologous recombination reactions yet described. However the mechanism of dsDNA recombination remains undefined.
Results
Here we show that the Red proteins can act via full length single stranded intermediates to establish single stranded heteroduplexes at the replication fork. We created asymmetrically digestible dsDNA substrates by exploiting the fact that Redα exonuclease activity requires a 5' phosphorylated end, or is blocked by phosphothioates. Using these substrates, we found that the most efficient configuration for dsDNA recombination occurred when the strand that can prime Okazaki-like synthesis contained both homology regions on the same ssDNA molecule. Furthermore, we show that Red recombination requires replication of the target molecule.
Conclusions
Hence we propose a new model for dsDNA recombination, termed 'beta' recombination, based on the formation of ssDNA heteroduplexes at the replication fork. Implications of the model were tested using (i) an
in situ
assay for recombination, which showed that recombination generated mixed wild type and recombinant colonies; and (ii) the predicted asymmetries of the homology arms, which showed that recombination is more sensitive to non-homologies attached to 5' than 3' ends. Whereas beta recombination can generate deletions in target BACs of at least 50 kb at about the same efficiency as small deletions, the converse event of insertion is very sensitive to increasing size. Insertions up to 3 kb are most efficiently achieved using beta recombination, however at greater sizes, an alternative Red-mediated mechanism(s) appears to be equally efficient. These findings define a new intermediate in homologous recombination, which also has practical implications for recombineering with the Red proteins.
Journal Article
Genome engineering of Agrobacterium tumefaciens using the lambda Red recombination system
by
Zhang, Youming
,
Fu, Jun
,
Hu, Shengbiao
in
Agrobacterium radiobacter
,
Agrobacterium tumefaciens
,
Agrobacterium tumefaciens - genetics
2014
Agrobacterium tumefaciens has been widely used as a tool for transgenesis in plants. The availability of its genome sequence should facilitate the directed engineering of improved properties; however, the current genome engineering options are laborious. Here, we investigated whether the lambda R ed operon can be applied for recombineering of the A. tumefaciens genome. First, we built an expression plasmid for A. tumefaciens employing a tetracycline-inducible promoter to regulate the Red operon. This multicopy plasmid was then itself modified in A. tumefaciens to verify that the Red operon was functional. Then, we modified the endogenous A. tumefaciens tumor-inducing plasmid and the linear chromosome. These results extend recombineering technology to a new host and indicate a fast and convenient way to engineer the A. tumefaciens genome for functional genomics and strain improvements.
Journal Article
An improved recombineering approach by adding RecA to l Red recombination
2006
Recombineering is the use of homologous recombination in Escherichia coli for DNA engineering. Of several approaches, use of the l phage Red operon is emerging as the most reliable and flexible. The Red operon includes three components: Reda, a 5' to 3' exonuclease, Redb, an annealing protein, and Redl, an inhibitor of the major E. coli exonuclease and recombination complex, RecBCD. Most E. coli cloning hosts are recA deficient to eliminate recombination and therefore enhance thestabulity of cloned DNAs. However, loss of RecA also impairs general cellular integrity. Here we report that transient RecA co-expression enhances the total numer of successful recombinations in bacterial artificial chromosomes (BACs), mostly because the E. coli host is more able to survive the stresses of DNA transformation procedures. We combined this practical improvement with the advantages of a temperature-sensitive version of the low copy pSC 101 plasmid to develop a protocol that is convenient and more efficient than any recombineering procedure, for use of either double-or single-stranded DNA, published to date.
Journal Article