Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
17
result(s) for
"Stickle, Angela"
Sort by:
Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos
by
Dotto, Elisabetta
,
Kumamoto, Kathryn M.
,
Barbee, Brent W.
in
639/33/445/210
,
639/33/445/848
,
Asteroid deflection
2023
The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test
1
. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact. On the basis of the change in the binary orbit period
2
, we find an instantaneous reduction in Dimorphos’s along-track orbital velocity component of 2.70 ± 0.10 mm s
−1
, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact
3
,
4
. For a Dimorphos bulk density range of 1,500 to 3,300 kg m
−3
, we find that the expected value of the momentum enhancement factor,
β
, ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg m
−3
,
β
=
3.61
−
0.25
+
0.19
(
1
σ
)
. These
β
values indicate that substantially more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos.
The authors report on a determination of the momentum transferred to an asteroid by kinetic impact, showing that the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos.
Journal Article
Ejecta from the DART-produced active asteroid Dimorphos
by
Dotto, Elisabetta
,
Trigo-Rodríguez, Josep M.
,
Jacobson, Seth
in
639/33/34/4117
,
639/33/445/848
,
Asteroid deflection
2023
Some active asteroids have been proposed to be formed as a result of impact events
1
. Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA
2
, in addition to having successfully changed the orbital period of Dimorphos
3
, demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope from impact time
T
+ 15 min to
T
+ 18.5 days at spatial resolutions of around 2.1 km per pixel. Our observations reveal the complex evolution of the ejecta, which are first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and subsequently by solar radiation pressure. The lowest-speed ejecta dispersed through a sustained tail that had a consistent morphology with previously observed asteroid tails thought to be produced by an impact
4
,
5
. The evolution of the ejecta after the controlled impact experiment of DART thus provides a framework for understanding the fundamental mechanisms that act on asteroids disrupted by a natural impact
1
,
6
.
Observations with the Hubble Space Telescope reveal a complex evolution of the ejecta produced by the Double Asteroid Redirection Test (DART) spacecraft impacting Dimorphos.
Journal Article
The geology and evolution of the Near-Earth binary asteroid system (65803) Didymos
by
Nolan, Michael C.
,
Dotto, Elisabetta
,
Ferrari, Fabio
in
704/445/215
,
704/445/848
,
Asteroid missions
2024
Images collected during NASA’s Double Asteroid Redirection Test (DART) mission provide the first resolved views of the Didymos binary asteroid system. These images reveal that the primary asteroid, Didymos, is flattened and has plausible undulations along its equatorial perimeter. At high elevations, its surface is rough and contains large boulders and craters; at low elevations its surface is smooth and possesses fewer large boulders and craters. Didymos’ moon, Dimorphos, possesses an intimate mixture of boulders, several asteroid-wide lineaments, and a handful of craters. The surfaces of both asteroids include boulders that are large relative to their host body, suggesting that both asteroids are rubble piles. Based on these observations, our models indicate that Didymos has a surface cohesion ≤ 1 Pa and an interior cohesion of ∼10 Pa, while Dimorphos has a surface cohesion of <0.9 Pa. Crater size-frequency analyzes indicate the surface age of Didymos is 40–130 times older than Dimorphos, with likely absolute ages of
~
12.5 Myr and <0.3 Myr, respectively. Solar radiation could have increased Didymos’ spin rate leading to internal deformation and surface mass shedding, which likely created Dimorphos.
Images collected during NASA’s DART mission of the asteroid Didymos and its moon, Dimorphos, are used to explore the origin and evolution of the binary system. Authors analysis indicate that both asteroids are weak rubble piles and that Didymos’ surface should be about 40 to 130 times older than Dimorphos.
Journal Article
Successful kinetic impact into an asteroid for planetary defence
by
Wortman, Kristin A.
,
Trigo-Rodríguez, Josep M.
,
Rodriguez, Luis M.
in
639/33/445/848
,
639/33/445/849
,
Asteroid collisions
2023
Although no known asteroid poses a threat to Earth for at least the next century, the catalogue of near-Earth asteroids is incomplete for objects whose impacts would produce regional devastation
1
,
2
. Several approaches have been proposed to potentially prevent an asteroid impact with Earth by deflecting or disrupting an asteroid
1
–
3
. A test of kinetic impact technology was identified as the highest-priority space mission related to asteroid mitigation
1
. NASA’s Double Asteroid Redirection Test (DART) mission is a full-scale test of kinetic impact technology. The mission’s target asteroid was Dimorphos, the secondary member of the S-type binary near-Earth asteroid (65803) Didymos. This binary asteroid system was chosen to enable ground-based telescopes to quantify the asteroid deflection caused by the impact of the DART spacecraft
4
. Although past missions have utilized impactors to investigate the properties of small bodies
5
,
6
, those earlier missions were not intended to deflect their targets and did not achieve measurable deflections. Here we report the DART spacecraft’s autonomous kinetic impact into Dimorphos and reconstruct the impact event, including the timeline leading to impact, the location and nature of the DART impact site, and the size and shape of Dimorphos. The successful impact of the DART spacecraft with Dimorphos and the resulting change in the orbit of Dimorphos
7
demonstrates that kinetic impactor technology is a viable technique to potentially defend Earth if necessary.
The impact of the DART spacecraft on the asteroid Dimorphos is reported and reconstructed, demonstrating that kinetic impactor technology is a viable technique to potentially defend Earth from asteroids.
Journal Article
Elliptical ejecta of asteroid Dimorphos is due to its surface curvature
by
Dotto, Elisabetta
,
Abell, Paul A.
,
Deshapriya, J. D. P.
in
639/166/984
,
639/33/445/848
,
Asteroid missions
2025
Kinetic deflection is a planetary defense technique delivering spacecraft momentum to a small body to deviate its course from Earth. The deflection efficiency depends on the impactor and target. Among them, the contribution of global curvature was poorly understood. The ejecta plume created by NASA’s Double Asteroid Redirection Test impact on its target asteroid, Dimorphos, exhibited an elliptical shape almost aligned along its north-south direction. Here, we identify that this elliptical ejecta plume resulted from the target’s curvature, reducing the momentum transfer to 44 ± 10% along the orbit track compared to an equivalent impact on a flat target. We also find lower kinetic deflection of impacts on smaller near-Earth objects due to higher curvature. A solution to mitigate low deflection efficiency is to apply multiple low-energy impactors rather than a single high-energy impactor. Rapid reconnaissance to acquire a target’s properties before deflection enables determining the proper locations and timing of impacts.
Double Asteroid Redirection Test (DART) mission impact on asteroid Dimophos resulted in an elliptical ejecta plume. Here, the authors show that this elliptical ejecta is due to the curvature of the asteroid and makes kinetic momentum transfer less efficient.
Journal Article
Predicting asteroid material properties from a DART-like kinetic impact
by
Megan Bruck Syal
,
Daly, R Terik
,
Stickle, Angela
in
Asteroid deflection
,
Ejecta
,
Elastic properties
2022
NASA's Double Asteroid Redirection Test (DART) mission is the first full-scale test of the kinetic impactor method for asteroid deflection, in which a spacecraft intentionally impacts an asteroid to change its trajectory. DART represents an important first step for planetary defense technology demonstration, providing a realistic assessment of the effectiveness of the kinetic impact approach on a near-Earth asteroid. The momentum imparted to the asteroid is transferred from the impacting spacecraft and enhanced by the momentum of material ejected from the impact site. However, the magnitude of the ejecta contribution is dependent on the material properties of the target. These properties, such as strength and shear modulus, are unknown for the DART target asteroid, Dimorphos, as well as most asteroids since such properties are difficult to characterize remotely. This study examines how hydrocode simulations can be used to estimate material properties from information available post-impact, specifically the asteroid size and shape, the velocity and properties of the impacting spacecraft, and the final velocity change imparted to the asteroid. Across >300 three-dimensional simulations varying seven material parameters describing the asteroid, we found many combinations of properties could reproduce a particular asteroid velocity. Additional observations, such as asteroid mass or crater size, are required to further constrain properties like asteroid strength or outcomes like the momentum enhancement provided by impact ejecta. Our results demonstrate the vital importance of having as much knowledge as possible prior to an impact mission, with key material parameters being the asteroid's mass, porosity, strength, and elastic properties.
DART Mission Determination of Momentum Transfer: Model of Ejecta Plume Observations
by
Vincenzo Della Corte
,
Stickle, Angela M
,
Chabot, Nancy L
in
Asteroid deflection
,
Computer simulation
,
Cubesat
2020
The NASA Double Asteroid Redirection Test (DART) spacecraft will impact the secondary member of the [65803] Didymos binary in order to perform the first demonstration of asteroid deflection by kinetic impact. Determination of the momentum transfer to the target body from the kinetic impact is a primary planetary defense objective, using ground-based telescopic observations of the orbital period change of Didymos and imaging of the DART impact ejecta plume by the LICIACube cubesat, along with modeling and simulation of the DART impact. LICIACube, contributed by the Italian Space Agency, will perform a flyby of Didymos a few minutes after the DART impact, to resolve the ejecta plume spatial structure and to study the temporal evolution. LICIACube ejecta plume images will help determine the vector momentum transfer from the DART impact, by determining or constraining the direction and the magnitude of the momentum carried by ejecta. A model is developed for the impact ejecta plume optical depth, using a point source scaling model of the DART impact. The model is applied to expected LICIACube plume images and shows how plume images enable characterization of the ejecta mass versus velocity distribution. The ejecta plume structure, as it evolves over time, is determined by the amount of ejecta that has reached a given altitude at a given time. The evolution of the plume optical depth profiles determined from LICIACube images can distinguish between strength-controlled and gravity-controlled impacts, by distinguishing the respective mass versus velocity distributions. LICIACube plume images discriminate the differences in plume structure and evolution that result from different target physical properties, mainly strength and porosity, thereby allowing inference of these properties to improve the determination of momentum transfer.
Momentum Transfer from the DART Mission Kinetic Impact on Asteroid Dimorphos
by
Naidu, Shantanu P
,
Ivanovski, Stavro L
,
Statler, Thomas S
in
Asteroid deflection
,
Bulk density
,
Ejecta
2023
The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on September 26, 2022 as a planetary defense test. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defense, intended to validate kinetic impact as a means of asteroid deflection. Here we report the first determination of the momentum transferred to an asteroid by kinetic impact. Based on the change in the binary orbit period, we find an instantaneous reduction in Dimorphos's along-track orbital velocity component of 2.70 +/- 0.10 mm/s, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact. For a Dimorphos bulk density range of 1,500 to 3,300 kg/m\\(^3\\), we find that the expected value of the momentum enhancement factor, \\(\\beta\\), ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg/m\\(^3\\), \\(\\beta\\)= 3.61 +0.19/-0.25 (1 \\(\\sigma\\)). These \\(\\beta\\) values indicate that significantly more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos.
Ejecta from the DART-produced active asteroid Dimorphos
by
Ivanovski, Stavro L
,
Dotto, Elisabetta
,
Jacobson, Seth
in
Asteroid deflection
,
Asteroids
,
Ejecta
2023
Some active asteroids have been proposed to be the result of impact events. Because active asteroids are generally discovered serendipitously only after their tail formation, the process of the impact ejecta evolving into a tail has never been directly observed. NASA's Double Asteroid Redirection Test (DART) mission, apart from having successfully changed the orbital period of Dimorphos, demonstrated the activation process of an asteroid from an impact under precisely known impact conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope (HST) from impact time T+15 minutes to T+18.5 days at spatial resolutions of ~2.1 km per pixel. Our observations reveal a complex evolution of ejecta, which is first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and later by solar radiation pressure. The lowest-speed ejecta dispersed via a sustained tail that displayed a consistent morphology with previously observed asteroid tails thought to be produced by impact. The ejecta evolution following DART's controlled impact experiment thus provides a framework for understanding the fundamental mechanisms acting on asteroids disrupted by natural impact.