Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
46 result(s) for "Stipcevic, Mario"
Sort by:
Enhancing the Security of the BB84 Quantum Key Distribution Protocol against Detector-Blinding Attacks via the Use of an Active Quantum Entropy Source in the Receiving Station
True randomness is necessary for the security of any cryptographic protocol, including quantum key distribution (QKD). In QKD transceivers, randomness is supplied by one or more local, private entropy sources of quantum origin which can be either passive (e.g., a beam splitter) or active (e.g., an electronic quantum random number generator). In order to better understand the role of randomness in QKD, I revisit the well-known “detector blinding” attack on the BB84 QKD protocol, which utilizes strong light to achieve undetectable and complete recovery of the secret key. I present two findings. First, I show that the detector-blinding attack was in fact an attack on the receiver’s local entropy source. Second, based on this insight, I propose a modified receiver station and a statistical criterion which together enable the robust detection of any bright-light attack and thus restore security.
Entropy considerations in improved circuits for a biologically-inspired random pulse computer
We present five novel or modified circuits intended for building a universal computer based on random pulse computing (RPC) paradigm, a biologically-inspired way of computation in which variable is represented by a frequency of a random pulse train (RPT) rather than by a logic state. For the first time we investigate operation of RPC circuits from the point of entropy. In particular, we introduce entropy budget criterion (EBC) to reliably predict whether it is even possible to create a deterministic circuit for a given mathematical operation and show its relevance to numerical precision of calculations. Based on insights gained from the EBC, unlike in the previous art, where randomness is obtained from electronics noise or a pseudorandom shift register while processing circuitry is deterministic, in our approach both variable generation and signal processing rely on the random flip-flop (RFF) whose randomness is derived from a fundamentally random quantum process. This approach offers an advantage in higher precision, better randomness of the output and conceptual simplicity of circuits.
Biomimetic Random Pulse Computation or Why Do Humans Play Basketball Better than Robots?
In this work, we compare the basketball scoring performance of two imaginary (simulated) mechanical robots in conditions of erroneous information-processing circuits: Machine, whose moves are controlled by a conventional digital computer and Man, controlled by a random pulse computer composed of biologically-inspired circuits which execute basic arithmetic operations. This is the first comparative study of robustness of the digital and the random pulse computing paradigms, with respect to the error rate of the information-processing circuits (perr), for a mechanical robot. In spite of the fact that Man’s computer consists of only about 100 logic gates while Machine’s requires about 3500 gates, Man achieves a significantly higher scoring probability for perr in the range from 0.01% all the way to 10%, while at lower perr, both converge to the perfect score. Furthermore, Man’s hits make up a smooth Gaussian distribution with a vanishing probability of making large misses even at the highest perr, while Machine is prone to spectacular misses already at perr as low as 1 part-per-million. These findings indicate that the biologically inspired computation requires less hardware for the same task, and ensures higher robustness and better behaving operation than digital computation, which are characteristics of importance for the survivability of living beings.
Comparative study of afterpulsing behavior and models in single photon counting avalanche photo diode detectors
Single-photon avalanche diode (SPAD) detectors, have a great importance in fields like quantum key distribution, laser ranging, florescence microscopy, etc. Afterpulsing is a non-ideal behavior of SPADs that adversely affects any application that measures the number or timing of detection events. Several studies based on a few individual detectors, derived distinct mathematical models from semiconductor physics perspectives. With a consistent testing procedure and statistically large data sets, we show that different individual detectors - even if identical in type, make, brand, etc. - behave according to fundamentally different mathematical models. Thus, every detector must be characterized individually and it is wrong to draw universal conclusions about the physical meaning behind these models. We also report the presence of high-order afterpulses that are not accounted for in any of the standard models.
An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response
Random numbers are essential for our modern information based society e.g. in cryptography. Unlike frequently used pseudo-random generators, physical random number generators do not depend on complex algorithms but rather on a physicsal process to provide true randomness. Quantum random number generators (QRNG) do rely on a process, wich can be described by a probabilistic theory only, even in principle. Here we present a conceptualy simple implementation, which offers a 100% efficiency of producing a random bit upon a request and simultaneously exhibits an ultra low latency. A careful technical and statistical analysis demonstrates its robustness against imperfections of the actual implemented technology and enables to quickly estimate randomness of very long sequences. Generated random numbers pass standard statistical tests without any post-processing. The setup described, as well as the theory presented here, demonstrate the maturity and overall understanding of the technology.
Stochastic Adder Circuits with Improved Entropy Output
Random pulse computing (RPC), the third paradigm along with digital and quantum computing, draws inspiration from biology, particularly the functioning of neurons. Here, we study information processing in random pulse computing circuits intended for the summation of numbers. Based on the information-theoretic merits of entropy budget and relative Kolmogorov–Sinai entropy, we investigate the prior art and propose new circuits: three deterministic adders with significantly improved output entropy and one exact nondeterministic adder that requires much less additional entropy than the previous art. All circuits are realized and tested experimentally, using quantum entropy sources and reconfigurable logic devices. Not only the proposed circuits yield a precise mathematical result and have output entropy near maximum, which satisfies the need for building a programmable random pulse computer, but also they provide affordable hardware options for generating additional entropy.
Unconditionally secure digital signatures implemented in an eight-user quantum network
The ability to know and verifiably demonstrate the origins of messages can often be as important as encrypting the message itself. Here we present an experimental demonstration of an unconditionally secure digital signature (USS) protocol implemented for the first time, to the best of our knowledge, on a fully connected quantum network without trusted nodes. We choose a USS protocol which is secure against forging, repudiation and messages are transferrable. We show the feasibility of unconditionally secure signatures using only bi-partite entangled states distributed throughout the network and experimentally evaluate the performance of the protocol in real world scenarios with varying message lengths.
Experimental implementation of secure anonymous protocols on an eight-user quantum key distribution network
Anonymity in networked communication is vital for many privacy-preserving tasks. Secure key distribution alone is insufficient for high-security communications. Often, knowing who transmits a message to whom and when must also be kept hidden from an adversary. Here, we experimentally demonstrate five information-theoretically secure anonymity protocols on an eight user city-wide quantum network using polarisation entangled photon pairs. At the heart of these protocols is anonymous broadcasting, which is a cryptographic primitive that allows one user to reveal one bit of information while keeping their identity anonymous. For a network of n users, the protocols retain anonymity for the sender, given that no more than n  − 2 users are colluding. This is an implementation of genuine multi-user cryptographic protocols beyond standard QKD. Our anonymous protocols enhance the functionality of any fully-connected Quantum Key Distribution network without trusted nodes.
A study of polarization compensation for quantum networks
The information-theoretic unconditional security offered by quantum key distribution has spurred the development of larger quantum communication networks. However, as these networks grow so does the strong need to reduce complexity and overheads. Polarization-based entanglement distribution networks are a promising approach due to their scalability and no need for trusted nodes. Nevertheless, they are only viable if the birefringence of all-optical distribution fibres in the network is compensated to preserve the polarization-based quantum state. The brute force approach would require a few hundred fibre polarization controllers for even a moderately sized network. Instead, we propose and investigate four different realizations of polarization compensation schemes that can be used in quantum networks. We compare them based on the type of reference signals, complexity, effort, level of disruption to network operations and performance on a four-user quantum network.
Linearity and Optimum-Sampling in Photon-Counting Digital Holographic Microscopy
In the image plane configurations frequently used in digital holographic microscopy (DHM) systems, interference patterns are captured by a photo-sensitive array detector located at the image plane of an input object. The object information in these patterns is localized and thus extremely sensitive to phase errors caused by nonlinear hologram recordings (grating profiles are either square or saturated sinusoidal) or inadequate sampling regarding the information coverage (undersampled around the Nyquist frequency or arbitrarily oversampled). Here, we propose a solution for both hologram recording problems through implementing a photon-counting detector (PCD) mounted on a motorized XY translation stage. In such a way, inherently linear (because of a wide dynamic range of PCD) and optimum sampled (due to adjustable steps) digital holograms in the image plane configuration are recorded. Optimum sampling is estimated based on numerical analysis. The validity of the proposed approach is confirmed experimentally.