Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
99
result(s) for
"Stoddard, Christopher"
Sort by:
Generation of isogenic models of Angelman syndrome and Prader-Willi syndrome in CRISPR/Cas9-engineered human embryonic stem cells
by
Gorka, Dea
,
Chamberlain, Stormy J.
,
Gilmore, Rachel B.
in
Alleles
,
Analysis
,
Angelman Syndrome - genetics
2024
Angelman syndrome (AS) and Prader-Willi syndrome (PWS), two distinct neurodevelopmental disorders, result from loss of expression from imprinted genes in the chromosome 15q11-13 locus most commonly caused by a megabase-scale deletion on either the maternal or paternal allele, respectively. Each occurs at an approximate incidence of 1/15,000 to 1/30,000 live births and has a range of debilitating phenotypes. Patient-derived induced pluripotent stem cells (iPSCs) have been valuable tools to understand human-relevant gene regulation at this locus and have contributed to the development of therapeutic approaches for AS. Nonetheless, gaps remain in our understanding of how these deletions contribute to dysregulation and phenotypes of AS and PWS. Variability across cell lines due to donor differences, reprogramming methods, and genetic background make it challenging to fill these gaps in knowledge without substantially increasing the number of cell lines used in the analyses. Isogenic cell lines that differ only by the genetic mutation causing the disease can ease this burden without requiring such a large number of cell lines. Here, we describe the development of isogenic human embryonic stem cell (hESC) lines modeling the most common genetic subtypes of AS and PWS. These lines allow for a facile interrogation of allele-specific gene regulation at the chromosome 15q11-q13 locus. Additionally, these lines are an important resource to identify and test targeted therapeutic approaches for patients with AS and PWS.
Journal Article
TET3 epigenetically controls feeding and stress response behaviors via AGRP neurons
2022
The TET family of dioxygenases promote DNA demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Hypothalamic agouti-related peptide-expressing (AGRP-expressing) neurons play an essential role in driving feeding, while also modulating nonfeeding behaviors. Besides AGRP, these neurons produce neuropeptide Y (NPY) and the neurotransmitter GABA, which act in concert to stimulate food intake and decrease energy expenditure. Notably, AGRP, NPY, and GABA can also elicit anxiolytic effects. Here, we report that in adult mouse AGRP neurons, CRISPR-mediated genetic ablation of Tet3, not previously known to be involved in central control of appetite and metabolism, induced hyperphagia, obesity, and diabetes, in addition to a reduction of stress-like behaviors. TET3 deficiency activated AGRP neurons, simultaneously upregulated the expression of Agrp, Npy, and the vesicular GABA transporter Slc32a1, and impeded leptin signaling. In particular, we uncovered a dynamic association of TET3 with the Agrp promoter in response to leptin signaling, which induced 5hmC modification that was associated with a chromatin-modifying complex leading to transcription inhibition, and this regulation occurred in both the mouse models and human cells. Our results unmasked TET3 as a critical central regulator of appetite and energy metabolism and revealed its unexpected dual role in the control of feeding and other complex behaviors through AGRP neurons.
Journal Article
CHD7 regulates definitive endodermal and mesodermal development from human embryonic stem cells
by
Wang, Shikun
,
Zheng, Jianqing
,
Zhao, Jin
in
Anopheles
,
Antibodies
,
Biomedical and Life Sciences
2025
Background
CHD7 encodes an ATP-dependent chromodomain helicase DNA binding protein; mutations in this gene lead to multiple developmental disorders, including CHARGE (Coloboma, Heart defects, Atresia of the choanae, Retardation of growth and development, Genital hypoplasia, and Ear anomalies) syndrome. How the mutations cause multiple defects remains largely unclear. Embryonic definitive endoderm (DE) generates the epithelial compartment of vital organs such as the thymus, liver, pancreas, and intestine.
Methods
In this study, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technique to delete the CHD7 gene in human embryonic stem cells (hESCs) to generate CHD7 homozygous mutant (CHD7
−/−
), heterozygous mutant (CHD7
+/−
), and control wild-type (CHD7
+/+
) cells. We then investigated the ability of the hESCs to develop into DE and the other two germ layers, mesoderm and ectoderm in vitro. We also compared global gene expression and chromatin accessibility among the hESC-DE cells by RNA sequencing (RNA-seq) and the assay for transposase-accessible chromatin with sequencing (ATAC-seq).
Results
We found that deletion of CHD7 led to reduced capacity to develop into DE and mesoderm in a dose-dependent manner. Loss of CHD7 led to significant changes in the expression and chromatin accessibility of genes associated with several pathways. We identified 40 genes that were highly down-regulated in both the expression and chromatin accessibility in CHD7 deleted hESC-DE cells.
Conclusions
CHD7 is critical for DE and mesodermal development from hESCs. Our results provide new insights into the mechanisms by which CHD7 mutations cause multiple congenital anomalies.
Journal Article
Examining the role of the surfactant family member SFTA3 in interneuron specification
by
Anderson, Nickesha C.
,
Chen, Christopher Y.
,
Bräuer, Lars
in
Biology
,
Biology and Life Sciences
,
Brain
2018
The transcription factor NKX2.1, expressed at high levels in the medial ganglionic eminence (MGE), is a master regulator of cortical interneuron progenitor development. To identify gene candidates with expression profiles similar to NKX2.1, previous transcriptome analysis of human embryonic stem cell (hESC)-derived MGE-like progenitors revealed SFTA3 as the strongest candidate. Quantitative real-time PCR analysis of hESC-derived NKX2.1-positive progenitors and transcriptome data available from the Allen Institute for Brain Science revealed comparable expression patterns for NKX2.1 and SFTA3 during interneuron differentiation in vitro and demonstrated high SFTA3 expression in the human MGE. Although SFTA3 has been well studied in the lung, the possible role of this surfactant protein in the MGE during embryonic development remains unexamined. To determine if SFTA3 plays a role in MGE specification, SFTA3-/- and NKX2.1 -/- hESC lines were generated using custom designed CRISPRs. We show that NKX2.1 KOs have a significantly diminished capacity to differentiate into MGE interneuron subtypes. SFTA3 KOs also demonstrated a somewhat reduced ability to differentiate down the MGE-like lineage, although not as severe relative to NKX2.1 deficiency. These results suggest NKX2.1 and SFTA3 are co-regulated genes, and that deletion of SFTA3 does not lead to a major change in the specification of MGE derivatives.
Journal Article
At the End of a Slippery Slope: A Pilot Study of Deceleration Mats for Snow Tubing
by
Scher, Irving S.
,
Shealy, Jasper E.
,
Stoddard, Christopher
in
Accelerometers
,
Kinematics
,
Noise
2021
On-slope pilot testing of snow tubes was conducted at two ski areas in the United States to examine the effects of deceleration mats. Snow tube and rider kinematics were measured using an instrumented bodysuit and a GPS system worn by the rider. For each test, the riders descended a tubing run with minimal input and stopped in the run-out area. Snow tube and rider speeds when entering the run-out area were controlled to be approximately 9.5 m/s. Test trials were conducted with and without deceleration mats. Four deceleration mat conditions were tested, including two raised surface protuberances (ribs and projections) and two mat geometry parameters (flat and folded). The deceleration and effective coefficient of friction (COF) were determined for each trial. Data were recorded for 75 test trials with a mean (± standard deviation) speed entering the run-out area of 9.5 (±1.8) m/s. There were no significant differences in the deceleration or effective coefficient of friction between the surface protuberance conditions. The peak deceleration and effective COF for the folded mats (5.1 ± 1.6 m/s2 and 0.26 ± 0.14) was greater than for the flat (3.3 ± 0.8 m/s2 and 0.10 ± 0.07) and no mat (0.06 ± 0.3 m/s2 and 0.08 ± 0.03) conditions (all p < 0.05). Deceleration mats in run-out areas slow snow tube riders faster than without deceleration mats. Folding the deceleration mats produced greater deceleration but did not produce significantly different kinematics for the riders.
Journal Article
Deficiency of MIP/MTMR14 phosphatase induces a muscle disorder by disrupting Ca2+ homeostasis
by
Yu, Wen-Mei
,
Nosek, Thomas M.
,
Qu, Cheng-Kui
in
Biomedical and Life Sciences
,
Cancer Research
,
Cell Biology
2009
Mutations in the MIP phosphatase MTMR14 are associated with human autosomal centronuclear myopathy. Mice that lack MIP have impaired muscle performance and enhanced fatigue due to the accumulation of MIP substrates PtdIns(3,5)P2 and PtdIns(3,4)P2, which cause alterations in intracellular Ca2+ levels.
The intracellular Ca
2+
concentration ([Ca
2+
]
i
) in skeletal muscles must be rapidly regulated during the excitation-contraction-relaxation process
1
. However, the signalling components involved in such rapid Ca
2+
movement are not fully understood. Here we report that mice deficient in the newly identified PtdInsP (phosphatidylinositol phosphate) phosphatase MIP/MTMR14 (muscle-specific inositol phosphatase) show muscle weakness and fatigue. Muscles isolated from
MIP/MTMR14
−/−
mice produced less contractile force, had markedly prolonged relaxation and showed exacerbated fatigue relative to normal muscles. Further analyses revealed that MIP/MTMR14 deficiency resulted in spontaneous Ca
2+
leakage from the internal store — the sarcoplasmic reticulum. This was attributed to decreased metabolism (dephosphorylation) and the subsequent accumulation of MIP/MTMR14 substrates, especially PtdIns(3,5)P
2
and PtdIns (3,4)P
2
. Furthermore, we found that PtdIns(3,5)P
2
and PtdIns(3,4)P
2
bound to, and directly activated, the Ca
2+
release channel (ryanodine receptor 1, RyR1) of the sarcoplasmic reticulum. These studies provide the first evidence that finely controlled PtdInsP levels in muscle cells are essential for maintaining Ca
2+
homeostasis and muscle performance.
Journal Article
A bipartite boundary element restricts UBE3A imprinting to mature neurons
by
Wilderman, Andrea
,
Chamberlain, Stormy J.
,
Core, Leighton
in
Alleles
,
Angelman Syndrome - genetics
,
Antisense therapy
2019
Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of function from the maternal allele of UBE3A, a gene encoding an E3 ubiquitin ligase. UBE3A is only expressed from the maternally inherited allele in mature human neurons due to tissue-specific genomic imprinting. Imprinted expression of UBE3A is restricted to neurons by expression of UBE3A antisense transcript (UBE3A-ATS) from the paternally inherited allele, which silences the paternal allele of UBE3A in cis. However, the mechanism restricting UBE3A-ATS expression and UBE3A imprinting to neurons is not understood. We used CRISPR/Cas9-mediated genome editing to functionally define a bipartite boundary element critical for neuron-specific expression of UBE3A-ATS in humans. Removal of this element led to up-regulation of UBE3A-ATS without repressing paternal UBE3A. However, increasing expression of UBE3A-ATS in the absence of the boundary element resulted in full repression of paternal UBE3A, demonstrating that UBE3A imprinting requires both the loss of function from the boundary element as well as the up-regulation of UBE3A-ATS. These results suggest that manipulation of the competition between UBE3A-ATS and UBE3A may provide a potential therapeutic approach for AS.
Journal Article
Identifying key underlying regulatory networks and predicting targets of orphan C/D box SNORD116 snoRNAs in Prader-Willi syndrome
2023
Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder characterized principally by initial symptoms of neonatal hypotonia and failure-to-thrive in infancy, followed by hyperphagia and obesity. It is well established that PWS is caused by loss of paternal expression of the imprinted region on chromosome 15q11-q13. While most PWS cases exhibit megabase-scale deletions of the paternal chromosome 15q11-q13 allele, several PWS patients have been identified harboring a much smaller deletion encompassing primarily
. This finding suggests
is a direct driver of PWS phenotypes. The
gene cluster is composed of 30 copies of individual
C/D box small nucleolar RNAs (snoRNAs). Many C/D box snoRNAs have been shown to guide chemical modifications of other RNA molecules, often ribosomal RNA (rRNA). However,
snoRNAs are termed 'orphans' because no verified targets have been identified and their sequences show no significant complementarity to rRNA. It is crucial to identify the targets and functions of
snoRNAs because all reported PWS cases lack their expression. To address this, we engineered two different deletions modelling PWS in two distinct human embryonic stem cell (hESC) lines to control for effects of genetic background. Utilizing an inducible expression system enabled quick, reproducible differentiation of these lines into neurons. Systematic comparisons of neuronal gene expression across deletion types and genetic backgrounds revealed a novel list of 42 consistently dysregulated genes. Employing the recently described computational tool snoGloBe, we discovered these dysregulated genes are significantly enriched for predicted
targeting versus multiple control analyses. Importantly, our results showed it is critical to use multiple isogenic cell line pairs, as this eliminated many spuriously differentially expressed genes. Our results indicate a novel gene regulatory network controlled by
is likely perturbed in PWS patients.
Journal Article
Generation of isogenic models of Angelman syndrome and Prader-Willi syndrome in CRISPR/Cas9-engineered human embryonic stem cells
2023
Angelman Syndrome (AS) and Prader-Willi Syndrome (PWS), two distinct neurodevelopmental disorders, result from loss of expression from imprinted genes in the chromosome 15q11-13 locus most commonly caused by a megabase-scale deletion on either the maternal or paternal allele, respectively. Each occurs at an approximate incidence of 1/15,000 to 1/30,000 live births and has a range of debilitating phenotypes. Patient-derived induced pluripotent stem cells (iPSCs) have been valuable tools to understand human-relevant gene regulation at this locus and have contributed to the development of therapeutic approaches for AS. Nonetheless, gaps remain in our understanding of how these deletions contribute to dysregulation and phenotypes of AS and PWS. Variability across cell lines due to donor differences, reprogramming methods, and genetic background make it challenging to fill these gaps in knowledge without substantially increasing the number of cell lines used in the analyses. Isogenic cell lines that differ only by the genetic mutation causing the disease can ease this burden without requiring such a large number of cell lines. Here, we describe the development of isogenic human embryonic stem cell (hESC) lines modeling the most common genetic subtypes of AS and PWS. These lines allow for a facile interrogation of allele-specific gene regulation at the chromosome 15q11-q13 locus. Additionally, these lines are an important resource to identify and test targeted therapeutic approaches for patients with AS and PWS.
Journal Article
Deficiency of MIP/MTMR14 phosphatase induces a muscle disorder by disrupting Ca(2+) homeostasis
by
Nosek, Thomas M
,
Yu, Wen-Mei
,
Scherman, Joseph A
in
Amino Acid Sequence
,
Animals
,
Calcium - metabolism
2009
The intracellular Ca(2+) concentration ([Ca(2+)](i)) in skeletal muscles must be rapidly regulated during the excitation-contraction-relaxation process. However, the signalling components involved in such rapid Ca(2+) movement are not fully understood. Here we report that mice deficient in the newly identified PtdInsP (phosphatidylinositol phosphate) phosphatase MIP/MTMR14 (muscle-specific inositol phosphatase) show muscle weakness and fatigue. Muscles isolated from MIP/MTMR14(-/-) mice produced less contractile force, had markedly prolonged relaxation and showed exacerbated fatigue relative to normal muscles. Further analyses revealed that MIP/MTMR14 deficiency resulted in spontaneous Ca(2+) leakage from the internal store - the sarcoplasmic reticulum. This was attributed to decreased metabolism (dephosphorylation) and the subsequent accumulation of MIP/MTMR14 substrates, especially PtdIns(3,5)P(2) and PtdIns (3,4)P(2). Furthermore, we found that PtdIns(3,5)P(2) and PtdIns(3,4)P(2) bound to, and directly activated, the Ca(2+) release channel (ryanodine receptor 1, RyR1) of the sarcoplasmic reticulum. These studies provide the first evidence that finely controlled PtdInsP levels in muscle cells are essential for maintaining Ca(2+) homeostasis and muscle performance.
Journal Article